Lecture LII: Hilbert Basis Theorem

\$52.1 Noetherian rings:

<u>Recall</u>: we defined commutative Northerian rings as commutative rings satisfying either one of the following three properties:

- (1) (Ascending Chain Condition) Given any ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ we can find $n \ge 1$ so that $I_n = I_{n+1} = I_{n+2} = ...$ (ie, the chain stabilizes)
- (2) Every non-empty set of ideals has at least one maximal element (with respect to induction)
- (3) Every ideal is finitely generated.
 <u>Lemma</u>: If I = I_× (ie × is a generating set) and I is finitely generated , then ∃ Y ⊆ × finite such that I = I_× That is, the finite list of generators can be chosen among the imput generating set.
 Pasef: Exercise.

Peoprition Let R be a commutative ring. Assume that R is Northerian. (1) For any peoper ideal $I \subseteq R$, the quotient ring B_{I} is Northerian (2) For any multiplicationly cloud set S of R, the ring of Fractions S⁻¹R is Northerian. (3) [easiest*] R_1, R_2 Northerian \Longrightarrow $R_1 \times R_2$ is Northerian. (3) [easiest*] R_1, R_2 Northerian \Longrightarrow $R_1 \times R_2$ is Northerian. <u>Proof</u>: (1) ble we Proprite 351.2 a show every ideal of R_{I} is finitely generated. Consider the natural projection $\pi: R \longrightarrow R_{I}$. By the Second Ismorphism Theorem \$39.1, any ideal $\tilde{J} \subseteq R_{I}$ corresponds to the ideal $J = \pi^{-1}(\tilde{J}) \subseteq R$ which entains I. Since R is Northerian, we have $J = (a_1, \dots, a_N)$ for some elements a_1, \dots, a_N . Then, $\tilde{J} = \pi(J) = (\pi(a_1), \dots, \pi(a_N))$ so \tilde{J} is finitely generated. (2) As with (1) be show that every ideal of S⁻¹R is finitely generated. We use the fact that

we know what ideals of 5'R look like (Lemma 1 344.2). Indeed, any ideal of 5'R

Lee the form
$$S^{T}I = \{\frac{a}{2} : a \in I, s \in S\}$$
 for some ideal I of R.
Since I is finitely generated, say $I = \{t_{1}, ..., t_{2}\}$, then we get
 $S^{T}I = \{\frac{b}{2}, ..., \frac{b}{2}\}$ (generations $\{j(t_{1}), ..., j(t_{2})\}$ with $j: R \longrightarrow S^{T}R$)
ble conclude that $S^{-1}I$ is finitely generated.
(9) By the Lemma below, any ideal I of $R_{1} \times R_{2}$ is of the form $I_{1} \times I_{2}$ ofter $I_{1} \in R_{1}$
and $I_{2} \leq R_{2}$ are ideals. Since I_{1}, I_{2} are finitely generated, then to is I.
Lemma 1 Given R_{1}, R_{2} arises, any ideal of $R_{1} \times R_{2}$ is the cartesian periods of ideal
of $R_{1} \propto R_{2}$.
Proof: We consider the natural projection $R_{1} \times R_{2}$ if R_{2}
 R_{1}
Both are surjections so given on ideal $I \leq R_{1} \times R_{2}$, we obtain two ideals:
(0) $I_{1}:=\Pi_{1}(I) \leq R_{1}$ a (2) $I_{2}:=R_{2}(I) \leq R_{2}$
Usin: $I = I_{1} \times I_{2}$
 $3F/W_{2}$ prove the double induction.
(c) We have $I \leq I_{1} \times R_{2} = \overline{R_{1}}(I_{1})$ a $I \leq R_{1} \times I_{2} = \overline{R_{2}}(I_{2})$. Thus, we
get $I \leq I_{1} \times I_{2} = (I_{1} \times R_{2}) \cap (R_{1} \times I_{2})$
(2) Let $e_{1}\in I_{1} \times a_{2}\in I_{2}$. Thus, J by R_{1} and $b_{2}\in R_{2}$ such that
 $a_{1} = R_{1}(b_{1}, b_{2})$ with $(a_{1}, b_{2}) \in I$.
Thus, $(a_{1}, a_{2}) = (I_{1}, 0) + (a_{1}, b_{2}) + (a_{1}) + (a_{1}) + (a_{1}) + (a_{2}) \in I$ where k multimetric $R_{1}R_{2}$.
Since a_{1}, a_{2} we caliform, we called $I_{1} \times I_{2} \in I$.
 M Subalargo of Northerian using used we be Northerian .
Example: (Instation $R_{2} \in K[X_{1}, X_{2}, X_{3}, \dots]$ where K is a Field
We have R is an indepleted with E_{2} and K is a Field
We have R is an indepleted $I \in S = R_{1}(a_{1})$, $A_{2} = S^{-1}(R_{2})$.
Fince R is an indepleted $R_{2} \in R_{2}(a_{1}) = S^{-1}R$.

(it's called the field of function).
The j: R
$$\longrightarrow$$
 F(R) is an injective any homomorphism. Thus, we get
. R is a subain of F(R)
. R is NOT Northenian
. F(R) is Northenian
. F(R) is Northenian
. Theorem R is commutative and Northenian. Thus, so is R(R)
In rule the pare this wait, or will and some votations and terms for polynomials for R(R)(10);
free = a, eq. x + ... + a_{n-1} xⁿ⁻¹ + a_n xⁿ and assume n is the dargent with an do.
. n = haper (F) darke of free
. a_n = f(R) constant time of free
. a_n = f(R) constant constant constant constant constant constant the free
. a_n = f(R) constant con

$$\frac{525}{\text{Baby steps}: \text{towards a proof of Hilbert Basis Theorem:}}{\text{Throughout, we assume R is a commutative ring.}} \\ \frac{7}{\text{Roportion}: If R is a Northenian ring and $D \in \mathbb{Z}_{\geq 1}$, then $R(x)$, is also Northenian.
Remark: This statement in hast would follow from Hilbert Basis Theorem, but we are going to use it in our proof.
We will in fait proor a stanger result. Namely,
Lomma: Given an abelian subgroup $J \subseteq R(x)/(x^b)$ such that $R \cdot J \subseteq J$, we can find
finitely many elements $f_1(x), \dots, f_p(x) \in J$ such that
 $J = R \cdot f_1(x) + R \cdot f_2(x) + \cdots + R f_p(x)$
Sapof: For each $k \in \{0, \dots, D-1\}$ we define
 $C_k(J):= \{o\} \cup \{a \in R : \exists f(x) \in J \text{ of the form } f_{(x)} = a \times k + \sum_{j=k+1}^{D-1} a_j \times j \}$
(ie collect lowest term of polynomials $f \in J$ with $x^k | f$.
Exercise: $C_k(J) \subset R$ is an ideal by our assumptions in J.
 $(use; J \subset R(x)/(x^b)$ is a subgroup and $R \cdot J \subset J$)$$

As R is Noetherian, $C_{k}(J) = (\alpha_{1}^{(k)}, ..., \alpha_{m_{k}}^{(k)})$ for some finite number of elements $\alpha_{1}^{(k)}, ..., \alpha_{m_{k}}^{(k)} \in \mathbb{R}$. These elements come from $f_{1}^{(k)}(x), ..., f_{m_{k}}^{(k)}(x) \in J$

That is
$$f_{1}^{(k)}(x) = d_{1}^{(k)} \times^{k} +$$
 terms involving
 $f_{m_{k}}^{(k)}(x) = d_{m_{k}}^{(k)} \times^{k} +$ terms involving
 $f_{m_{k}}^{(k)}(x) = d_{m_{k}}^{(k)} \times^{k} +$ terms involving
 $\chi^{k+1}, \dots, \chi^{b+1}$ $\in J$

 $\frac{(\text{laim}: J = (R f_{1}^{(0)}(x) + \dots + R f_{m_{0}}^{(0)}(x)) + (R f_{1}^{(1)}(x) + \dots + R f_{m_{1}}^{(1)}(x)) + \dots + (R f_{1}^{(b-1)}(x) + \dots + R f_{m_{b-1}}^{(b-1)}(x))$ $\frac{3f/1F}{3}(x) = \Im x^{\ell} + \frac{[\text{lams involving}}{x^{\ell+1}, \dots, x^{b-1}} \in J \quad \text{then} \quad \Upsilon \in C_{\ell}(J) = (\alpha_{1}^{(\ell)}, \dots, \alpha_{m_{\ell}}^{(\ell)})$ $\frac{10}{R}$

This means
$$\mathcal{Y} = r_1 \, \alpha'_1^{(e)} + \dots + r_{m_e} \, \alpha'_{m_e}^{(e)}$$
 for some $r_1, \dots, r_{m_e} \in \mathbb{R}$
 $\Rightarrow \overline{g}(x) = g(x) - \sum_{j=1}^{m_e} r_j \, f_j^{(e)} \in \mathbb{J}$ and $\overline{g}(x) = g' x^{e+1} + \frac{\text{terms involving}}{x^{e+1}, \dots, x^{b+1}}$
So $\mathcal{Y} \in C_{e+1}(\mathbb{J})$.
Repeating this argument, after D-L iterations of this arguments, we get the claim.

<u>Remark:</u> Any $J \subseteq R(x)$ ideal satisfies the inditions of the Lemma rine $R \longrightarrow R(x)$ is a subring. Thus, the Proposition follows directly from the Lemma.