Lecture LIII: Hilbert Basis Thum I; Bolynomials over UFDS 53.1 Hillert Basis Theorem : Theorem: Assume R is commutative and Northenian. Then, so is REXI. Last time we de fined leading ideals and proved a key technical result: Definition: Given a commutative sing R and an ideal $\tilde{I} \subseteq R[X]$, we define: $L(\tilde{I}) := \{a \in R : a = L(F) \}$ for some $f \in \tilde{I} \} \subset R$ $I = \{bere, rif = \sum_{n=0}^{\infty} a_n X^n = a_0 \neq 0, set L(F) := a_0 . Set LT(0) = 0. \}$ Lemma : $L(\tilde{I}) \subset R$ is an ideal Throughout, we assume R is a commutative sing.

Proposition: If R is a Noetherian ring and $D \in \mathbb{Z}_{\geq 1}$, then R[x] is also Noetherian. Horeover, for any $J \subseteq R[x]/(x^{\circ})$ ab subgroup with $RJ \subseteq J$, $\exists F_{1}, ..., F_{n} \in J$ with $J = R \cdot F_{1} + ... + R \cdot F_{n}$. (Example, J an ideal of $R(x)/(x^{\circ})$)

Broof of Hilbert's Basis Theorem:
Let
$$\tilde{I} \subseteq R[X]$$
 be an ideal. We show that \tilde{I} is finitely generated.

<u>Step 1:</u> Take the ideal $I = L(\tilde{T}) \subset \mathbb{R}$. By Proposition \$51.2, we know I is finitely generated because \mathbb{R} is Noetherian. Write $I = (a_1, \dots, a_N)$ and therefore we get

$$\vartheta_{N}(x) = \varphi_{N} x^{d_{1}} + \frac{\text{terms involving } x^{d_{1}-1}, \dots, x^{0}}{\vdots} \in \mathbb{I}$$

$$\vartheta_{N}(x) = \varphi_{N} x^{d_{N}} + \frac{\text{terms involving } x^{d_{N}-1}, \dots, x^{0}}{\vdots} \in \mathbb{I}$$

Step 2: (Division Algorithm)
If
$$D = \max \{ \exists_1, ..., \exists_N \}$$
 ($\exists_i = \deg_{i}(\varsigma_i) \ \forall_i = 1, ..., N$) then $\forall \varsigma_{iXS} \in \widetilde{T}$,
 $\exists \overline{\varsigma}(x) \in \widetilde{T}$ st $\deg_{iX}(\overline{\varsigma}) < D$
 $\varsigma = \overline{\varsigma} \mod(\varsigma_1, ..., \varsigma_N)$
St/ If $\deg_{iXS} < D$ we have nothing to prove. Otherwise, we write
 $\varsigma_{iXS} = \delta X^{\mathsf{M}} +$ terms involving $X^{\mathsf{N}-1}, ..., X^{\circ}$ $\in \widetilde{T}$
and $\Pi \ge d_j$ \forall_j .

As
$$Y \in I = (a_1, ..., a_N)$$
 we have $r_1, r_2, ..., r_N \in \mathbb{R}$ st $Y = r_1 a_1 + ... + r_N a_N$
 $\Rightarrow g_{(X)} - \sum_{j=1}^{N} r_j g_{j(X)} X^{H-\Delta j} \in \widetilde{I}$ has degree < II
We repeat this statiggy wall degree $\overline{g} \leq D$
 $Step 3:$ Take case of polynomials in \widetilde{I} of degree < D using Lemma §52.4
Let us denote by $\widetilde{I}_{\leq D} = \frac{1}{4} f \in \widetilde{I}$: hence $(f) < D$ }
Then, $\widetilde{I}_{\leq D} \leq \mathbb{R}[X]$ is an abelian subgroup and $\mathbb{R} \widetilde{I}_{\leq D} < \widetilde{I}_{\leq D}$
By the argument from the proof of Lemma §52.4, $\frac{1}{2} f_{r(X)}, ..., f_{p(X)} \in \widetilde{I}_{\leq D}$
such that $\widetilde{I}_{\leq D} = \mathbb{R} f_{r(X)} + \mathbb{R} f_{r(X)} + ... + \mathbb{R} f_{p(X)}$.
Hence, embining this with the conclusion of $Step 2$:
 $\widetilde{I} = [g_1, ..., g_N; f_1, ..., f_p]$ is finitely generated.
ess: 2 Solynomials one UFDs:
Recall: We have, so for, proved the following number for commutative rings.
Thorem (: Euclidean domain $\Rightarrow P(D) \Rightarrow UFD$
 $\cdot P(D) \Rightarrow Netherican domain$

Theorem 2: Un a UFD we have a well-defined notion of a greatest common divisor.

Key: U = a UFD R; x is an irreducible element $\implies x = a$ is a prime element (x inted : $x = al \implies a \in \mathbb{R}^{\times} \ 7 \ b \in \mathbb{R}^{\times} \qquad vs \qquad x \text{ prime } \equiv (x) \text{ is a prime ideal } ex \neq 0$) (\Leftarrow) is true for any somain R.

NEXT GOALS: () Show R UFD => R[x] UFD.

② Show UFDs ⊈ Northerian Drains & Nettener, Drains ⊈ UFDs

\$53.3 Gauss' Lemma:

Fix R a UFD a let F=F(R) we its held of fractions.

<u>Recall</u>: F(R) = S'R when S = R'30t is the multiplicatively closed set of all non-zero elements of R.

We are going to view $R \subseteq F$ and $R[x] \subseteq F[x]$ (as subrings) Definition: A polynomial $P \in R[x] > 30$ is said to be <u>primitive</u> if gcd(coefficients of p(x)) = 1 in R.

That is, if
$$p = \sum_{j=0}^{n} c_j x^j$$
 with $c_n \neq 0$ Thus, $d|c_j$ $\forall j=0,...n \Rightarrow d\in \mathbb{R}^{\times}$
 \mathbb{R}
 $\frac{E \times ample}{R}$: $R=\mathbb{Z}$, $f_{(X)} = 2X+4$ is not primitive $f_{(X)} = 2(X+2)$ is
 $q \times nm$ -tained factorization in $\mathbb{Z}[X]$, but a trivial one in $\mathbb{Q}(x)$.

Lemma (Gauss): If R is a UFD and
$$P(x) \in R(x]$$
 is a primitive polynomial,
then: $P(x)$ is inedecible in $R(x)$ if and mly if $P(x)$ is ineducible in $F[x]$.
 $\overline{3nooh}$: ((=) is easy : if $P(x) = F(x) P(x)$ with $F, g \in R[x] \subseteq \overline{T}[x]$, then
the ineducibulity of $P(x)$ over $\overline{T}[x]$ implies $F(x) \in \overline{F}[x]^{\times}$ if $g(x) \in \overline{F}[x]^{\times}$.
By using deque(), we know $\overline{T}[x]^{\times} = \overline{F}^{\times}$, so $\overline{F}^{\times} \cap R[x] = R \cap \overline{F}^{\times} = R \cdot 30$?
Thus, we have $F(x) \in R \cdot 30$? If $(x) \in R \cdot 30$?

By symmetry, assume $F \in \mathbb{R} \setminus S \circ F$. Then, by construction F divides each coefficient of P(x) or \mathbb{R} , hence $F \in \mathbb{R}^{\times}$ because P is a primitive element. Then, $F \in \mathbb{R}^{\times} = \mathbb{R}[x]^{\times}$ Thus, P(x) is implicible or $\mathbb{R}[x]$.

(=>) is the hand direction. Assume pue, is ineducible over $\mathbb{R}(\times)$. <u>(laim 1:</u> dig $(p(x)) = n \ge 1$ $\frac{\mathbb{C}(x)}{\mathbb{C}(x)} = 0$, then $p = r \in \mathbb{R}$ paimitive implies $p \in \mathbb{R}^{\times} = (\mathbb{R}[x])^{\times}$, which cannot occur because ineducible elements are not units. • We argue by contradiction and assume p(x) = A(x)B(x) for some $A_{(x)}$, $B(x) \in F(x)$ that are not units, is $dig(A(x)) = k \ge 1$ & $dig(B(x)) = n-k \ge 1$. Chaning demoninators, we can find some $d \in \mathbb{R} \setminus \{0\}$ such that:

(*) d.
$$p(x) = a(x) b(x)$$
 with $a(x), b(x) \in \mathbb{R}$

Here, $a_{(x)} = rA_{(x)}$, $b_{(x)} = sB_{(x)}$ with $r, s \in \mathbb{R}$, so $d = r \cdot s$. <u>Uaim 2</u>: $\exists \alpha', r \in \mathbb{R}$ s.t. $d = \alpha/s$ & $\underline{a_{(x)}} \in \mathbb{R}(x]$, $\underline{b_{(x)}} \in \mathbb{R}(x]$ <u>Basof</u>: Next Time. The inconcibility of $r_{(x)}$ or $\mathbb{R}(x)$ will say $\underline{a_{(x)}} \in (\mathbb{R}(x))^{\times} = \mathbb{R}^{\times}$ π $\underline{b_{(x)}} \in \mathbb{R}^{\times}$, introducting the fract that $d_{xy} A_{(x)} = d_{xy} (\underline{a_{(x)}}) > 0$ e $d_{y} B_{(x)} = d_{yy} (\underline{b_{(x)}}) > 0$