Lecture LIV: R UFD => R(x] UFD

1

TODAY'S GOAL: Show R UFD => R[x] UFD.

\$54.1 Gauss's Inuducibility hiteron: We will need the following notations and would from Lecture 53. Fix R a UFD a let F=F(R) we its held of fractions. Recall: F(R) = S'R when S = Rigot is the multiplicatively closed set of all non-zero elements of R. We are going to view $R \subseteq F$ and $R[x] \subseteq F[x]$ (as subrings) Definition: A polynomial PER(x] 308 is said to be primitive if scd (coefficients of p(x)) = 1 in R. That is, if $l = \sum_{j=0}^{n} c_j x^j \in R_{[x]}$ with $c_n \neq 0$ Then, $d|c_j \neq j=0,..., n \implies d \in \mathbb{R}^{\times}$ Lemma (Gauss): If Ris a UFD and Vix, ER(x) is a primitive polynomial, then: P(x) is ineducible in R(x) if, and mly if, p(x) is ineducible in F[x]. <u>Savoh.</u> (<=) Lecture 53 (=>) Assume pue, is ineducible over R(x). (Lecture 53) $\underline{\text{Uaim 1}}: \quad \text{dig } (p(x)) = n \ge 1$. We argue by contradiction and assume p(x) = A(x) B(x) for some A(x), B(x) EF(x] that are not units, ie dig $(A_{1X}) = k \ge 1 = k dig (B_{1X}) = n-k \ge 1$. Chaning denominators, we can find some $d \in \mathbb{R} \setminus \{0\}$ such that: (*) d. p(x) = a(x) b(x) with $a(x), b(x) \in \mathbb{R}$

Here, $a_{(x)} = rA_{(x)}$, $b_{(x)} = sB_{(x)}$ with $r, s \in \mathbb{R}$, so $d = r \cdot s$. <u>(laim 2:</u> $\exists \alpha', s \in \mathbb{R}$ s.t. $d = \alpha/s$ $\alpha = \underline{a_{(x)}} \in \mathbb{R}(x]$, $\frac{b_{(x)}}{s} \in \mathbb{R}(x]$ $\exists f/ \quad If \quad d \quad is \quad a \quad unit$, there is nothing to prove. Otherwise, we can write $d = p_1 \cdots p_{\ell}$ where $p_1, \dots, p_{\ell} \in \mathbb{R}$ are ineducible/prime elements.

We will find a cell, ..., le and i, size----size with
$$\{1,...,l\} \land \{i_1,...,i_l\} = \{i_{k+1},...,k\} \land$$

such that $d = P_1,...,P_{k-} \land f = P_{k+1},...,P_{k-1} = antisty $\frac{a_{k+2}}{d}, \frac{b_{k+2}}{d} \in R(x)$.
We proceed as follows. Take $P_1 = \{p_1\} \subseteq R$
Since p_1 is inducable a R is a UFD, then p_1 is prime a p_2 .
Then: $P_1 = \{1, 1\} \subseteq R$ is a non-zero prime ideal
(residen $\{k\}$) modulo $P_1 R_{(X)}$:
 $O = \left(\sum_{l=0}^{K} (a_l \mod P_l) \times^{\frac{1}{2}}\right) \left(\sum_{j=0}^{N+K} (b_j \mod \overline{P_1}) \times^{\frac{1}{2}}\right)$
Since R_{p_1} is a domain, we know $\left(R_{p_1}\right) [X]$ is also a domain. Thus, one
of the two factors above is 0. Thus, either:
 $P_1 \Rightarrow a_1,...,a_K \in P_1 \implies \frac{a_{100}}{P_1} \in R(X)$
 $P_1 = \frac{a_{100}}{P_1} (P_1) (p_1) (p_1) (p_1) (p_2) (p_1) (p_1) (p_1) (p_2) (p_1) (p_2) (p_1) (p_1)$$

Thurm 1: IF R is a UFD, then so is R[x].

Before and peoper the theorem are used line technical coults
$$\frac{3}{2}$$

Lemmal: If $r \in \mathbb{R}$ is inclusively , then r is inclusively $\mathbb{R}[X]$ as well.
Proof: By similing $r \in \mathbb{R}[X]$ in $\overline{P}[X]$, and applying dig(s), we use that
may expression $r = t_{(X)} _{(X)}$ is the two, $j_{(X)} \in \mathbb{R}(X)$ has $t_{(X)}$, $g_{(X)} \in \mathbb{R}$.
Since $\mathbb{R}^{\times} = (\mathbb{R}[X])^{\times}$, the neutral follows.
Lemma 2: Let \mathbb{R} be a UFD and fixe flow, $a_{(X)}, b_{(X)} \in \mathbb{R}(X]$ with
 $f(X) = a_{(X)} b_{(X)}$. Then : $p_{(X)}$ is primitive $x = b$ both $a_{(X)}$ and $b_{(X)}$ are.
Proof: (\Rightarrow) If d1 all coefficients of $a_{(X)}$, then d1 all coefficients of $f(X)$
 $b_{(X)}$ enstantion. Thus, $d \in \mathbb{R}^{\times}$ because $p_{(X)}$ is primitive. This shows $a_{(X)}$ is primitive.
By symmetry the same is time for $b_{(X)}$
(\Leftrightarrow) IF $d = get(eorff of $f_{(X)}$), then $p_{(X)} = d\bar{p}_{(X)}$ with $d^{X} = d$ set.
 $\frac{a_{(X)}}{a} \in \mathbb{R}[X]$ a $\frac{1}{\sqrt{2}} \in \mathbb{R}[X]$.
The claim in the past of Game's Lemma unsues $\exists d_{1}, d \in \mathbb{R}^{\times}$ a $A \in \mathbb{R}^{\times}$,
hence $d = d_{1}d \in \mathbb{R}^{\times}$. Thus, $p_{(X)}$ is familiate.
(bothlamp1: Let \mathbb{R} be a UFD and the $p_{(X)} = a_{(X)}, \dots, a_{r(X)}$ are.
Proof: (\Rightarrow) is clase. Take $a_{1} = a_{(X)} = b_{1} = a_{1} \cdots \hat{a_{1}} \cdots a_{r}$.
Bowe class $r = 1$ is class.
Thus the proved by induction on r
Bowe class $r = 1$ is class.
Thus, the Lemma applied To $a_{2} \cdots a_{r}$ is primitive.
Thus, the Lemma applied To $a_{2} \cdots a_{r}$ is primitive.
Thus, the Lemma applied To $a_{2} \cdots a_{r}$ we be $p_{(X)} = a_{1} \cdots p_{r}$.
D$

<u>Proof of Theorem 1</u>: We need to show both existence and uniqueness of hactorizations ⁴ into ineducibles

(1) <u>Existence</u>: Pick $p(x) \in \mathbb{R}[x] = p(x) \neq 0 \ll p(x) \notin \mathbb{R}[x]^{*}$. We want to write $p(x) \approx a$ product of ineducible factors. To begin, we write

$$d = \gcd \circ F$$
 the coefficients of $f(x)$
Then, $d \in F$ and $f(x) = d \overline{f}(x)$ where $\overline{f}(x) \in \overline{F}(x)$ is primitive
Since $d \in \overline{R} - 30^{\circ}$ if is either in $\overline{R}(x)^{\times}$ or it can be written luniquely) as a

product of ineducible elements of R. By Lemme 1, these elements remain ineducible in R[x]. Thus, it is enough to prove the factorization exists for the premitive polynomial $\overline{P}(x)$.

Assuming
$$\overline{P}(x)$$
 is not a unit, we know dug $(\overline{P}(x)) \ge 1$.
Since $\overline{P}(x)$ is a UFD (broklang 2 \$50.8) we can write
 $\overline{P}(x) = A_1(x) \cdots A_T(x)$ (***)
uniquely as a product of ineducible polynomials in $\overline{P}(x)$.
By loadlary $\underbrace{e}_{S_1,1}$, we can rewrite (**) as
 $\overline{P}(x) = a_1(x) \cdots a_T(x)$
when $a_1(x), \dots, a_T(x) \in \overline{R}(x)$ and $\forall i: a_i = \lambda_i A_i$ for some $\lambda_i \in \overline{F}^x$
Since $\overline{P}(x)$ is primitive, it follows that all $a_1(x), \dots, a_T(x)$ are primitive as well.
by loadlary 1.
Now, Gauss's Lemma implies that each $a_j(x)$ is ineducible in $\overline{R}(x)$. This prove
the existence of the Factorization of $p(x)$.
(2) Uniqueness: To prove uniqueness assume $p \in \overline{R}(x)$, $p \notin 0$
has a factorization $p(x) = a_1 \cdots a_T = b_1 \cdots b_S$
with a_1, \dots, a_T , $b_1, \dots, b_S \in \overline{R}(x)$ all ineducible.
We assume $\exists k, l \le 1$. $a_1, \dots, a_R \in \overline{R}$, $a_{K+1}, \dots, a_T \in \overline{R}(x)^T$, R

$$b_{1,--,b_{1}} \in \mathbb{R}$$
, $b_{2+1,--,b_{2}} \in \mathbb{R}[X_{1}] \setminus \mathbb{R}$

Then aret, ..., ac, beti, ..., be must be primitive.

We have
$$P(x_{3} = (a_{1} \dots a_{K}) \xrightarrow{a_{K+1} \dots a_{T}} = (b_{1} \dots b_{K}) (b_{L+1} \dots b_{K})$$

with $A(x_{3}), B(x_{3} \in \mathbb{R}[X_{3}]$ primitive by corollargitists.
Thus $gcd(coefficients of p(x)) = a_{1} \dots a_{K}$ (from the LHS), so
 $b_{1} \dots b_{K}$ (from the RHS)
 $\exists u \in \mathbb{R}^{\times}$ st $a_{1} \dots a_{K} = u b_{1} \dots b_{K} \in \mathbb{R}$.
Since \mathbb{R} is a UFD : $K = L$ and $\exists T \in S_{K}$ at $\forall i: a_{i}$ is associated to $b_{O(3)}$
Thus, we have $u \mid A(x_{i}) = B(x_{i})$ with $u \in \mathbb{R}^{\times}$ a both $A(x_{i}) \neq B(x_{i})$ are
primitive. Absorbing u into a_{K+1} we can assume $u = 1$.
• Since $a_{K+1} \dots a_{K}$, b_{K+1} , b_{K+1} , b_{K+1} are free $\mathbb{R}[X_{i}]$.
As $F(x_{i}) = a \cup FD$ we get $r-k = s-L$ (so $r=s$ since $k=\ell$)
and after relabelling, for each $j = l+1, \dots, s$ we have
 $b_{j}(x_{i}) = \lambda_{j}a_{j}(x_{i})$ for some $\lambda_{j} \in \mathbb{R}^{\times}$.
(In beed, write $\lambda_{j} = \frac{d_{i}}{d_{i}}$ with d_{i} , $h_{i} \in \mathbb{R}$ to $g_{i} \in R_{i}(x_{i})$.
(In beed, write $\lambda_{j} = \frac{d_{i}}{d_{i}}$ with d_{i} , $h_{i} \in \mathbb{R}$ to $d_{i} \in \mathbb{R}^{\times}$)
 $(actuation : r = s and, write actualizing, each $a_{i}(x_{i})$ is associate to be two is
 $V_{i} = 1, \dots, r$: $\exists u_{i} \in \mathbb{R}[x_{i}]^{\times} = \mathbb{R}^{\times}$ with $a_{i} = u_{i}b_{i}$.$