l Lecture LV: Nove n UFDs, Eisenstein's hiterion for Ineducibility \$55.1 Summary on UFDs: Recall : Let R be an integral domain • a CR with a to, a R is inducible if a = xy => x CR or y CR. • a E R_____ is prime if xy E la) => x E la) or y E la) Lemma: a prime \Longrightarrow a is ineducible · R is a UFD (unique factorization demain) if every non-zew, non-unit element can be written uniquely as a finite product of inedexcible elements of R That is for every a ER, a = 0, a ER* there exist ineducible elements p1,..., pr (not necessarily distinct) so that a = pr--- pr (existence of factorization) Moreover it a = q1,...q , where q1,..., que R are also ineducible, then k=l and there is a permutation of {1, ..., 1} and units u, ..., ue ER* such that qi = ui P σ(i) ∀i ∈ } 1,.., l } (uniqueness of factorization)

Examples:
$$Z[x_{1},...,x_{n}]$$
 is a UFD,
Given K hield , where $K[x_{1},...,x_{n}]$ is a UFD.
Next, we show that UFDs a Northerian domains are not celeted by indusion:
There 1: UFD \notin Northerian behaviors
Saude: If K is a keld , then $R=K[x_{1}, x_{2}, ...,]$ is not Northerian but it is a UFD
($lain_{1:}$ R is a keld , then $R=K[x_{1}, x_{2}, ...,]$ is not Northerian but it is a UFD
($lain_{1:}$ R is a keld , then $R=K[x_{1}, x_{2}, ...,]$ is not Northerian but it is a UFD
($lain_{1:}$ R is a therefore a finituly generated iteal, as we saw in leating 52.
($lain_{2:}$ R is a UFD.
 $3t/$ Rick EER , $F \neq 0$ a $f \notin R^{X}$. Then \exists was st. $f \in K[x_{1}, ..., x_{n}]$
Since $K[x_{1}, ..., x_{n}] \in \mathbb{R}$ is a onlying, $f \notin R^{X} \Rightarrow F \notin K[x_{1}, ..., x_{n}] \times K^{X}$
Since $K[x_{1}, ..., x_{n}] \in \mathbb{R}$ is a onlying, $f \notin R^{X} \Rightarrow F \notin K[x_{1}, ..., x_{n}] \times K^{X}$
Since $K[x_{1}, ..., x_{n}] \in \mathbb{R}$ is a onlying, $f \notin R^{X} \Rightarrow F \notin K[x_{1}, ..., x_{n}] \times K^{X}$
Since $K[x_{1}, ..., x_{n}] \in \mathbb{R}$ is a only $f \in \mathbb{R}$ and $f \in \mathbb{R}$.
 $g_{1:}$ Wey is fit ineducible in R for all f ?
 $Al:$ Wey is this factorization on R anique (up to associated)?
 $Al:$ Assume $f(x_{1}, ..., x_{n}]$.
 $(lain_{1:}, m=n)$.
 $3t/$ Assume where $K[x_{1}, ..., x_{n-1}, x_{n-1}][X_{n}]$ and use the bact that
 $f_{0:} f_{0:}h_{1:} \in K(x_{1}, ..., x_{n}]$.
 $(lain_{1:}, m=n)$.
 $3t/$ Assume where $K[x_{1}, ..., x_{n-1}, x_{n-1}][X_{n}]$ and use the bact that
 $bg_{X_{m}}$ is additive with supert to multiplication :
 $0 = bg_{X_{m}} f_{1:} = bg_{X_{m}} f_{1:} + bg_{X_{m}} h_{1:} \implies bo$ by $x_{m} f_{1:} = bg_{X_{m}} h_{1:} = 0$.

ie $g_i, h_i \in K_{[x_1; -;; x_{m-i}]}$

By induction on m-n >0 we unclude $g_i, h_i \in K(x_1, ..., x_n)$ ie m=n. Since $h_i \in K(x_1, ..., x_n)$ is inclucible, we get $g_i \in K(x_1, ..., x_n]^* = K^* \subset \mathbb{R}^*$ or

hi
$$\in K^{\times} \subseteq \mathbb{R}^{\times}$$

Conclude: fi is ineducible in \mathbb{R}^{\times} $\forall i = 1, ..., r$.
AZ: If $f = g_1 \dots g_r = h_1 \dots h_s$ with $g_i, h_j \in \mathbb{R}$ ineducible $\forall i, \forall j$.
Thun $f \in K[\kappa_1, \dots, \kappa_n]$ for some n implies by the proof of Claim above that
 $\delta i, h_j \in K[\kappa_1, \dots, \kappa_n]$ $\forall i, j$.
Sime $K[\kappa_1, \dots, \kappa_n] \subseteq \mathbb{R}$ subaimps, we conclude g_i, h_j and ineducible in $K[\kappa_1, \dots, \kappa_n]$
Thus, because $K[\kappa_1, \dots, \kappa_n]$ is a UFD we get $r = s$ a up to relateding,
 $\exists \lambda_1, \dots, \lambda_r \in \mathbb{R}^{\times} \subseteq \mathbb{R}^{\times}$ st. $g_i = \lambda_i h_i$.
Conclusion: The factorization in \mathbb{R} is unique.

Thorm Z: Northman domains
$$\notin$$
 UFDs
 $\underline{3uooF}: \cdot \mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}(x)$ is a quotient of a Northman ning,
 $(x^{2}+5)$ have it is Northman.
 $\cdot \mathbb{Z}[\sqrt{-5}]$ is not a PID, and it is not a UFD.
Also $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are z distinct factorizations into
inclucibles (Show: N(z) = 4, N(z) = 9, N(1 + \sqrt{-5}) = 6 => they are inclucible)
 \widehat{M} Subnings / Quotient nings of UFDs need not be UFDs.
 $\underline{Example 1}: \mathbb{Z}$ is a UFD (because it is a Euclidean domain), so $\mathbb{Z}[x]$ is also a
UFD. Take $I = (x^{2}+5)$

Then
$$\mathbb{Z}[X] \simeq \mathbb{Z}[\Gamma_5]$$
 is still a domain (quotient of domains are not
 T necessarily domains) but it is not a UFD
 $a+b\times(mrdI) \leftarrow a+b\sqrt{-5}$

We saw this in Lectures 48 & 50 (.ZEJ-5] is not a PID, hence not a UFD . 3 is ineducible but not prime)

 $\frac{\text{Example 2}}{\mathbb{Z}[7-5]} \subseteq \mathbb{C} \quad \text{is a subsing} \quad \mathbb{C} \text{ is a hield, hence a UFD, but}$ $\mathbb{Z}[7-5] \quad \text{is not a UFD}.$

$$\frac{Example 3}{R_{1}} = \begin{cases} R_{1} (x) (x + x) = 0 \\ R_{1} = \begin{cases} R_{1} (x) = a_{0} + a_{1} x + a_{2} x^{2} + \dots + a_{n} x^{n} \in Q(x_{1}) \text{ s.t } a_{1} = 0 \\ \\ = \begin{cases} r_{1} + r_{1} + r_{2} \in Q(x_{1}) = r_{1}(x) = 0 \\ R \\ \end{cases}$$

$$\frac{(lain_{1})}{3F_{1}} = R_{1} (r_{1} + r_{2}) (r_{1}) = r_{1}(x) + r_{2}(x) = 0 \\ \\ + r_{1} + r_{2} \in R_{1} = x \\ r_{1} + r_{2} \in R_{1} = x \\ \end{cases} = \begin{cases} r_{1} + r_{2} + r_{2} \\ r_{1} + r_{2} + r_{2} \\ \\ + r_{1} + r_{2} + r_{1} \\ \\ r_{1} + r_{2} + r_{2} \\ \\ \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{2} \\ r_{1} + r_{2} + r_{2} \\ \\ \\ r_{1} + r_{2} + r_{2} \\ \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{2} \\ r_{1} + r_{2} + r_{2} \\ \\ \\ r_{1} + r_{2} + r_{2} \\ \\ \\ \\ r_{1} + r_{2} + r_{2} \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{2} + r_{2} \\ \\ r_{1} + r_{2} + r_{2} \\ \\ \\ r_{1} + r_{2} + r_{2} \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{1} + r_{2} + r_{2} \\ \\ r_{1} + r_{2} + r_{1} \\ \\ r_{1} + r_{2} + r_{2} \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{1} + r_{2} + r_{2} \\ \\ r_{1} + r_{1} + r_{2} + r_{2} \\ \\ r_{1} + r_{2} + r_{1} \\ \end{array} = \begin{cases} r_{1} + r_{2} + r_{1} + r_{2} + r_{1} \\ \\ r_{1} + r_{2} + r_{1} \\ \\ r_{1} + r_{2} + r_{1} \\ \end{array} = r_{1} + r_{1} + r_{2} + r_{1} \\ \end{cases} = r_{1} + r_{2} + r_{1} + r_$$

\$55.2 Eisenstein's hiterion:

Next, we give another application of Gauss' Lemma <u>Theorem</u> (Eisenstein hitmin for Intelucibility) Let R be a UFD. Assume we have $f_{(X)} = a_1 X^n + \dots + a_1 X + a_0 \in \mathbb{R}[X]$ with $leg(F) = n \ge 1$. Let $p \in \mathbb{R}$ be an intelucible element. Assume: • $f_{(X)}$ is painitive (i.e. $gc \ge (coefficients of F) = 1$) • $a_n \neq 0$ mod p , • $a_i \equiv 0$ mod p $\forall i \in 30, \dots, n-1$ • $a_i \neq 0$ mod p^2 Then, $f_{(X)}$ is intelucible in $\mathbb{R}[X]$ <u>Remark</u>: By Gauss's Lemma , this is equivalent to saying $f_{(X)}$ is intelucible in

FEXD where F is the hield of fractions of R.

South: Assume fixe =
$$g(xy, h(x)) = f(x) = g(xy, h(x)) \in \mathbb{R}[x_1]$$
.
If fixe is not inclucible, then $g(x) = g(x) + (x_1, x^{1+1} + \cdots + h_0)$
Thus, in unit $g(x_1) = h(x^{1+1} + h(x_1, x^{1+1} + \cdots + h_0))$
 $h(x_1) = c_2 x^2 + c_{2,1} x^{1+1} + \cdots + c_0$
with $\lambda, l \geq 1$ and $\lambda + \lambda = n = hoper (l(x_1))$
As $ho c_0 = a_0 = 0$ and p for x_1 that exactly are of h_0 , c_0 is
 $\neq 0$ and p^2
divisible by p . Without loss of generality, we assume plots a $pA h_0$.
 $0 + h(x) = c_2 x^2 + c_{2,1} x^{1+1} + \cdots + c_0 \implies \exists x_1 \in s \leq k + pA c_2$
We have $h(x) = c_2 x^2 + c_{2,1} x^{1+1} + \cdots + c_0 \implies \exists x_1 \in s \leq k + suck that$
 $ut divisible divisible by p
 $c_{1}, \ldots, c_{r-1} \equiv 0$ and p (if plo_1, \ldots, plo_{r-1})
 $c_r \neq 0$ and p (if $pA c_r$)
Now, we have at the coefficient of x^r in $f(x_1)$:
 $a_r = \frac{b_0 c_r}{pA} + \frac{b_r c_{r-1} + \cdots + b_r c_0}{pl} \implies pA a_r$ is $a_r \neq 0$ (und p)
 $\frac{bsrs}{pA} = \frac{b_1 c_1}{pl} + \frac{b_r c_{r-1} + \cdots + b_r c_0}{pl} \implies pA a_r$ is $a_r \neq 0$ (und p)
 $\frac{bsrs}{pA} = \frac{b_1 c_2}{pl} + \frac{b_r c_{r-1} + \cdots + b_r c_0}{pl} \implies pA a_r$ is $a_r \neq 0$ (und p)
 $\frac{bsrs}{pA} = \frac{b_1 c_2}{pl} + \frac{b_r c_{r-1} + \cdots + b_r c_0}{pl} \implies pA a_r$ is $a_r \neq 0$ (und p)
 $\frac{bsrs}{pA} = \frac{b_1 c_1}{pl} + \frac{b_1 c_{2}}{pl} = \frac{(x + z - f_2)(x + 2 + f_2)}{pl} = \frac{b_1 c_2}{pl} + \frac{b_1 c_2}{pl} = \frac{(x + z - f_2)(x + 2 + f_2)}{pl} = \frac{b_1 c_2}{pl} + \frac{b_1 c_2}{pl} = \frac{(x + z - f_2)(x + 2 + f_2)}{pl} = \frac{b_1 c_2}{pl} + \frac{b_1 c_2}{pl} = \frac{c_1 c_2}{pl} = \frac{c_2 c_2}{pl} = \frac{c_1 c_2}{pl} = \frac{c_2 c_2}{pl} = \frac{c_1 c_2}{pl} = \frac{c_1 c_2}{pl} = \frac{c_2 c_2}{pl} = \frac{c_1 c_2}{pl} = \frac{c$$

(2)
$$f_{(x)} = x^2 + x + i \in \mathbb{Z}[x]$$
 is ineducible
Solution 1: Usen (1: $f_{(x)} = \frac{x^3 - i}{x - i} = (x - \omega)(x - \omega^2)$ when $\omega = \frac{-1 \pm \sqrt{3}}{2}i$
If $f_{(x)} = (x - \alpha)(x - \beta)$ for $\alpha, \beta \in \mathbb{Q}$, then $\alpha = \omega \in \mathbb{Q}$ => $\sqrt{3}i \in \mathbb{Q}$ (with!
Solution 2: Unange $f_{(x)}$ to $g_{(x)} = f_{(x+1)} = \frac{x^2 + 2x + i}{x + i}$
 $\frac{1}{x^2 + 3x + 3}$

Take p=3 in Eisenstein's hiteron to show F(x+1) is inclucible If F(x) factors, so does F(x+1) because $\forall h \in Q[x]$ dig $h_{(x)} = dig(h(x+1))$.