Lecture LVI: Towards Gröbner bases I

\$ 56.1 Roots of Polynmials and their multiplicity.

In Lecture 54, we discussed ineducibility of a polynomial in me variable with coefficients from a UFD. We also und the hollowing fact in our examples from Lecture 55: Lemma 1: Let K be a hield (eq. K = Q, R, C, Z/p_Z for p > z paime) 4 let $F \in KCx$] and $x \in K$. Then:

$$(x-\alpha) \quad \text{divides} \quad F(x) \quad \text{in } K(x] \iff F(\alpha) = 0$$

$$\frac{3\alpha\sigma f_{1}}{(x)} \quad \text{if } f(x) = (x-\alpha)g(x) \quad \text{for some } g_{(x)} \in K[x], \text{ then } f(\alpha) = 0 \quad g(\alpha) = 0$$

$$(\stackrel{(=)}{=}) \quad \text{Use the Euclidean Algorithm to write} \quad F(x) = (x-\alpha)g(x) + f(\alpha)$$
so that $\Gamma = 0 \quad \text{or } \Gamma_{(x)} \neq 0$ and $dig(\Gamma(x)) < dig(x-\alpha) = 1$, if $\Gamma \in K$

$$Now, \quad F(\alpha) = 0 \cdot g(\alpha) + \Gamma = \Gamma$$

$$f(\alpha) = 0 \quad f(\alpha) + \Gamma = \Gamma$$

$$\stackrel{(=)}{=} \quad \Gamma = 0 \quad \text{so} \quad F(x) = (x-\alpha)g(x).$$

Similarly, we can prook a more general neult.
Lemma 2: Let K be a hield. Let
$$F \in K(x]$$
, $x \in K$ and $N \ge 1$. Then:
 $(x-x)^N$ divides $F(x)$ is $K(x] \iff F_{(x)} = \frac{F_{(x)}' = F_{(x)}' = \cdots = F_{(x)}^{(N-1)} = 0$
dividing of F, F', \cdots
Definiting: IF $F = a_n x^n + \cdots + a_1 x + a_0$, then $F'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} \cdots + 2a_2 x + a_1$
 $\underline{Saoof:}$ (\Longrightarrow) White $F(x) = (x-d)^N g_{(x)}$ for some $g \in K(x]$
Thus $F'(x) = N(x-d)^{N-1} g_{(x)} + (x-d)^N g'_{(x)} = (x-d)^{N-1} (Ng_{(x)} + (x-d)g'_{(x)})$
 \underline{W}_{e} product by induction on N:
 $\underline{Sax}(a_{222}: N=1)$ is the content of Lemma1.
Inductive Step: $(x-d)^N$ divides F , so $(x-d)$ divides F . By Lemma1, $F_{(d)} = 0$
Since $F'(x) = (x-d)^{N-1} h(x)$, the (1H) says $F'_{(d)} = (F')^{1}_{(d)} = \cdots = (F')^{N-2}_{(d)}$ = o.
(\xleftarrow) Using the Euclidean Algorithm, we write
 $F(x) = (x-d)^N g_{122} + F'_{123}$ (N)

with
$$\Gamma_{(x)} \equiv 0$$
 77 $(\Gamma_{(x)} \neq 0$ and $\log \Gamma_{(x)} < \log (x-\alpha)^N = N$.

We take beinstine of (*) on both sides :

$$f_{1}(x) = N(x-\alpha)_{N-1} \left(\underbrace{N \hat{d}^{(x)} + (x-\alpha) \hat{d}_{1}}_{=:\hat{d}^{(x)} \in K[x]} + L_{1}(x) + L_{1}(x) + L_{2}(x) + L_$$

We preced by induction on N :
Bax Cane : N=1 is the statement of Lemma 1
I. builting Step : Evaluating both sides of (4) at x=d we get

$$\circ = F(d) = 0^{N} q_{(d)} + \Gamma_{(d)} = 0$$

So $\Gamma_{(d)} = 0$.
Taking the deciration of (n) yields $f'(x) = (x-d)^{N-1} g_{(x)} + \Gamma'(x)$ (may)
If $\Gamma'(x) \neq 0$, then deg $(\Gamma'(x)) = deg (\Gamma(x)) - 1 < N-1$
By (1H) applied to F': $F'_{(d)} = F''_{(d)} = \dots + f^{(n-1)}_{(d)}(n) = 0 \implies (X-d)^{N-1} | f'.$
 $(F')^{(1d)} = (F')^{(1d-2)}(n)$
Thus : $F'(x) = (X-d)^{N-1} h_{(X)}$ for some $h_{(X)} \in K(X]$
Comparing this with (max) we get $(X-d)^{N-1} | \Gamma'$
This cannot happen if $\Gamma' \neq 0$ since $deg \Gamma' < N-1$ but $N-1 \leq \Gamma'$ from $(X-d)^{N-1} | \Gamma'$.
Thus, $\Gamma' \equiv 0$, so $\Gamma \in K$.
Since $\Gamma_{(d)} = 0$, we conclude $\Gamma_{(X)} \equiv 0$ so $(X-d)^{N} | f(x)$ in $K(X)$ is
 $\frac{Belimitin:}{(d)} left F \in K(X) = d \propto CK$ with $f(x) \equiv 0$ but $f^{(M)}_{(d)} \neq 0$
Exploring this is N if $f_{(d)} = f'(d) = \dots = f^{(N-1)}_{(d)} \equiv 0$ but $f^{(M)}_{(d)} \neq 0$
Exploring the source K is a field and $f(x) \in K(X)$. If $f(x)$ is $K(X)$.
 $\frac{Croblemy:}{M}$. Assume K is a field and $f(x) \in K(X)$. If $f(x)$ has midiative tasks
in K, then $m \leq deque(F)$.
 $\frac{Side wate i}{M}$ We athelly proved and we this explaint in the proof of Thosem 1 \$252.75 is clubed that $Ard_{F}(\frac{2}{N}) = T_{P}^{X}$ is cyclic for $p \ge 2$ prime.

<u>Example</u>: Let $f(x) = x^2 + x + i \in \mathbb{F}_2(x]$. Thus $d \in \mathbb{F}_2$ can only be $0 \neq i$. f(0)=i, $f(i)=s \equiv i$ and z, so $\forall d \in \mathbb{F}_2$ $f(d) \neq 0$. Thus, f(x) cannot be written as a product of two linear factors in $\mathbb{F}_2[x]$, hence f(x) is irreducible for degree reasons.

Solution
Solution
The any K[x_1,...,x_n] for non
**The K a field and let
$$R = K[x_1,...,x_n]$$
 be the aing of polynomials in a nariables
with coefficients from K.
Let us quickly nonice the poort of Hilbert Basis Theorem, which implies that R is
Northanian (i.e., easy ideal in R is finitely generated).
 $R = K[x_1,...,x_n] = \underbrace{K[x_1,...,x_{n-1}]}_{(all it h)} \begin{bmatrix} x_n] \\ call this variable is for new
=> $R = A[u]$
T ideal most Take $L(I) \leq A$ ideal on A generated by the deading coefficients
of those $p(u) \in I \leq A[u]$
Step 1: We use the fract that A is Northerian to get $(a_1,...,a_n) = L(I)$ in A
Tick $p_1(u_1,...,p_k(u_n) \in A[u_1]$ so that Leading coefficient of $p_j(u_1) = a_j$
Using the division algorithm, modulo $p_{1}(u_1,...,p_k(u_n)$, the degree of any $q_1(u_1) \in A[u_1]$ can
be barright down To be (strictly) less than max f dig $(p_j(u_1))f = iD$
 $\underbrace{Step 2:}_{i = 3}$ Tick "generators" of $I \leq b = fp(u) \in I$: dig $(p(u_1) < Df$
 $(finitely many)$
Note: (1) By voting $u = x_n$ we made a choice i x_n is "better" than $x_1,...,x_{n-1}$ (ner
demonstratic)$**

Gröbner basis will allow us to solve these issues.

Definition: A monomial is a polynomial with only one term
Example:
$$x_i^* x_2 \in K[x_1, x_2]$$
.
We can write a polynomial in $K[x_1, ..., x_n]$ as a finite sum of monomials.
Example: A typical polynomial in $K[x_1, x_2]$ is of the form $\sum_{\substack{k \in \mathbb{Z} \\ k \neq k > 0}} c_{k, k} x_1^k x_2^k$
We will use a conservent short hand notatin:
• \underline{x} to kenote $x_1, ..., x_n$
• $\underline{x} = x_1, ..., x_n$ to denote "expressions" $(\alpha_1, ..., \alpha_n \in \mathbb{Z}_{\geq 0})$
• $\underline{x}^{\underline{n}} = x_1^{n'} \dots x_n^{n'}$ to denote a typical removal
 $\sum_{\substack{k \in \mathbb{Z} \\ m \neq n'}} c_{\underline{n}} \underline{x}^{\underline{n}}$ to denote a typical removal
 $\sum_{\substack{k \in \mathbb{Z} \\ m \neq n'}} c_{\underline{n}} \underline{x}^{\underline{n}}$ to denote a typical polynomial
 $\sum_{\substack{k \in \mathbb{Z} \\ m \neq n'}} c_{\underline{n}} \underline{x}^{\underline{n}}$ to denote a typical polynomial

\$56.4. Leading turns:
Let us assume we fixed a monomial order for monomials in
$$K(x_1, ..., x_n]$$

Definition: Given $f(x) = \sum_{\substack{n \ mnile}} c_{(n)} x^{\frac{n}{2}} \in K(x_1, ..., x_n]$ is define the heading
term of $f(wrt <)$ as $LT(f) = c_{(n)} x^{\frac{n}{2}}$ where α_0 is such that
(1) $c_{(n)} \neq 0$ and $(z) c_{(n)} \neq 0 \Rightarrow x^{\frac{n}{2}} \leq x^{\frac{n}{2}}$
Convertion: $LT(0) = 0$
Note: Sime < is a Total order $LT(f)$ is well-defined and consists of a
single monomial.