ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 2

Notations: S_{n} is the group of permutations on n letters $\{1, \ldots, n\}$. For $1 \leq i \leq n-1$, $s_{i}=(i i+1)$ denotes the simple transposition exchanging i and $i+1$.

Problem 1. Let G be a group acting on a set X. Assume that the action is free and transitive. Pick $x \in X$ and define a set map $G \rightarrow X$ by $g \mapsto g \cdot x$. Prove that this map is bijective.

Problem 2. Consider the following group acting on $X=\mathbb{R}^{2} \backslash\{(0,0)\}$:

$$
G:=\left\{\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right): 0 \leq \theta \leq 2 \pi\right\}
$$

Determine whether the action of G on X is free, faithful and/or transitive. Describe the orbit space $G \backslash X$.

Problem 3. Assume a finite group G acts transitively on a finite set X with $|X| \geq 2$. Prove that there exists $g \in G$ such that $X^{g}=\emptyset$. Conclude that the projection to the first component of the incidence variety $F=\{(g, x) \in G \times X: g \cdot x=x\}$ is not surjective.

Problem 4. Let G be a group and H be a subgroup of G. Consider the action of G on the left cosets G / H by $x \cdot(g H)=(x g) H$.
(i) Show that this is indeed an action of G on G / H.
(ii) What is the stabilizer of a left coset $g H \in G / H$?
(iii) Prove that this action is faithful if, and only if, $\bigcap_{g \in G} g H g^{-1}=\{e\}$.

Problem 5. Assume G is a group and H is a subgroup of finite index, i.e., $(G: H)<\infty$. Prove that there exists a normal subgroup N of G such that $(G: N)<\infty$ with $N \subseteq H$. (Hint: Consider G acting on the finite set G / H.)

Problem 6. Let $G=\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ (invertible 2×2 matrices over the field with three elements), and view G acting on itself by conjugation, that is $g \cdot h=g h g^{-1}$. Consider the following element of G :

$$
X=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Describe the orbit of X and its stabilizer subgroup.
Problem 7. (Projective linear group and the moduli space $M_{0, n}$) Let \mathbb{K} be any field. We define the ($n-1$)-dimensional projective space over \mathbb{K} as the set

$$
\mathbb{P}^{n-1}:=\left\{\underline{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n} \backslash\{(0, \ldots, 0)\}\right\} / \sim,
$$

where $\underline{x} \sim \underline{y}$ if, and only if, there exists $\lambda \in \mathbb{K} \backslash\{0\}$ with $x_{i}=\lambda y_{i}$ for all $i=1, \ldots, n$. We represent the class of a point \underline{x} in \mathbb{P}^{n-1} by $\left(x_{1}: \ldots: x_{n}\right)$.

The projective linear group is defined as the quotient group:

$$
\operatorname{PGL}(n)=\operatorname{GL}(n) / \mathrm{Z}(\operatorname{GL}(n)) .
$$

(i) Show that the center $Z(\operatorname{GL}(n))$ equals the set of scalar matrices, i.e. the diagonal matrices $\operatorname{diag}(\lambda, \ldots, \lambda)$ with $\lambda \in \mathbb{K} \backslash\{0\}$. (Hint: Use permutation matrices to show that each matrix in the center is parameterized by two values: one for the diagonal entries and one for the off-diagonal entries. To finish, use elementary matrices to show that the off-diagonal entries must all be zero.)
(ii) Show that $\operatorname{PGL}(n)$ acts on \mathbb{P}^{n-1} by left matrix multiplication.
(iii) Set $n=2$ and consider the action of PGL(2) on sets of three distinct points in \mathbb{P}^{1} (ordered triples of distinct points in \mathbb{P}^{1}) via

$$
\sigma \cdot\left\{p_{1}, p_{2}, p_{3}\right\}=\left\{\sigma \cdot p_{1}, \sigma \cdot p_{2}, \sigma \cdot p_{3}\right\} .
$$

(iv) Conclude that the action in (iii) is transitive. Thus, we can represent the unique orbit by the set $\{0,1, \infty\}$, that is $\{(0: 1),(1: 1),(1: 0)\}$. (In geometric terms, this says that the moduli space of rational curves with three distinct marked points (denoted by $\left.M_{0,3}^{\circ}\right)$ is just a point).
(v) Show that the PGL(2)-orbits of tuples of four distinct ordered points in \mathbb{P}^{1} is in bijection with $\mathbb{P}^{1} \backslash\{0,1, \infty\}$. (In geometric terms, this says $M_{0,4}^{\circ}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$).

Problem 8. Given a permutation $\pi \in S_{n}$, we define its length $\ell(\pi)$ as the smallest number ℓ such that π can be written as a product of ℓ simple transpositions. Prove that $\ell\left(\pi s_{k}\right)<\ell(\pi)$ if, and only if $\pi(k)>\pi(k+1)$.

Problem 9. Fix a permutation $\pi \in S_{n}$. Prove that $\ell(\pi)$ is the same as the cardinality of the following set

$$
\{(i, j): 1 \leq i<j \leq n \text { and } \pi(i)>\pi(j)\}
$$

Problem 10. Let G_{n} be the group given by the following presentation. The set G_{n} has $n-1$ generators g_{1}, \ldots, g_{n-1} and these generators satisfy the following list of relations:

$$
\begin{aligned}
g_{i}^{2}=e & \text { for every } 1 \leq i \leq n-1 \\
g_{i} g_{j}=g_{j} g_{i} & \text { for every } 1 \leq i, j \leq n-1 \text { with }|i-j|>1 \\
g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1} & \text { for every } 1 \leq i \leq n-2
\end{aligned}
$$

(i) Prove that there is a unique surjective group homomorphism $G_{n} \rightarrow S_{n}$ sending g_{i} to s_{i} for all $i=1, \ldots, n-1$.
(ii) Let H be the subgroup of G_{n} generated by g_{1}, \ldots, g_{n-2}. Prove that the following is the list of all cosets G_{n} / H :

$$
H_{0}:=H ; H_{1}:=g_{n-1} H ; H_{2}:=g_{n-2} H_{1}=g_{n-2} g_{n-1} H ; \ldots ; H_{n-1}:=g_{1} H_{n-2}=g_{1} \cdots g_{n-1} H .
$$

(iii) Prove by induction on n that $\left|G_{n}\right| \leq n$!. Conclude that $G_{n} \xrightarrow{\sim} S_{n}$.

Problem 11. Determine the conjugacy classes in S_{5} and the number of elements in each class.

Problem (Bonus). Show that the number of conjugacy classes in S_{n} is counted by the partitions of n. These are defined as non-increasing sequences $\lambda_{1} \geq \lambda_{2} \geq \ldots$ of non-negative integers with $\lambda_{1}+\lambda_{2}+\ldots=n$. Compute the number of elements in each conjugacy class.

Partitions are fundamental objects in enumerative combinatorics, and are usually denoted by $\lambda \vdash n$.) Do some literature search (e.g. using Google) to see how to count these partitions in terms of n and write a brief summary.

