ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 5

Problem 1. (Fun with commutators)

Let G be a group. For $a, b \in G$, define $[a, b]:=a b a^{-1} b^{-1}$. Recall that for any two subsets $A, B \subset G$, we defined (A, B) to be the subgroup generated by $\{[a, b]: a \in A, b \in B\}$.
(i) Verify the following identity, for all $a, x, y \in G$:

$$
[a, x y]=[a, x][x,[a, y]][a, y] .
$$

(ii) Let A, B, C be three normal subgroups of G. Prove that $(A,(B, C))$ is generated by $\{[a,[b, c]]: a \in A, b \in B, c \in C\}$.
(iii) Recall that $C^{1}(G)=G$ and $C^{n+1}(G):=\left(G, C^{n}(G)\right)$ defines the lower central series of G. Prove that for every $m, n \geq 1$ we have $\left(C^{m}(G), C^{n}(G)\right) \subseteq C^{m+n}(G)$.

Problem 2. Consider the following groups of matrices over \mathbb{C}.

$$
\begin{gathered}
B=\left\{\left(\begin{array}{cc}
d_{1} & x \\
0 & d_{2}
\end{array}\right) \text { where } d_{1}, d_{2} \neq 0 \text { and } x \text { is arbitrary }\right\} \\
N=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \text { where } x \text { is arbitrary }\right\}
\end{gathered}
$$

(i) Show that B is solvable.
(ii) Show that N and B / N are nilpotent, but B is not.

Problem 3. Let G be a group and let N_{1}, N_{2} be two normal subgroups satisfying $\left(G, N_{1}\right) \subseteq$ $N_{2} \subseteq N_{1}$. Given any subgroup $H<G$, prove that $N_{2} H \triangleleft N_{1} H$.

Problem 4. Prove that the following three assertions about a finite group G are equivalent:
(i) G is nilpotent.
(ii) Every Sylow subgroup of G is normal.
(iii) G is a direct product of p-groups.
(Hint: Use the Lemma we saw in Lecture 14 and Problem 3 on Homework 3.)
Problem 5. Let G be a nilpotent group and let H be a proper subgroup of G. Prove that there exists a proper normal subgroup N of G, which contains H and such that G / N is abelian.
(Hint: See the proof of the Lemma of Lecture 14).
Problem 6. Let G be a nilpotent group and H be a subgroup. Prove that if $G=H .(G, G)$, then $H=G$. In other words, a subset X of G generates G if, and only if the image of X
under the natural surjection generates $G /(G, G)$.
(Hint: See the proof of the Lemma of Lecture 14).
Problem 7. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Assume Σ^{\prime} is a composition series of G^{\prime} :

$$
\Sigma^{\prime}: G^{\prime}=G_{0}^{\prime} \triangleright G_{1}^{\prime} \triangleright G_{2}^{\prime} \triangleright \ldots \triangleright G_{n}^{\prime}=\{e\} .
$$

Let Σ be the sequence with terms $G_{j}=\varphi^{-1}\left(G_{j}^{\prime}\right)$ for all $j=0, \ldots, n$, and $G_{n+1}=\{e\}$.
(i) Prove that Σ is a composition series of G.
(ii) Prove that we have injective homomorphisms $\operatorname{gr}_{i}^{\Sigma}(G) \rightarrow \operatorname{gr}_{i}^{\Sigma^{\prime}}\left(G^{\prime}\right)$ for each $0 \leq i \leq n-1$.

Problem 8. Let H be a group admitting a Jordan-Hoölder series. Let $\ell(H)$ be the number of terms in a Jordan-Hölder series of H. Show this number is well defined.

Problem 9. Let G be a group and N be a normal subgroup of G. Prove that G has a Jordan-Hölder series if, and only if both N and G / N do. In that case, prove that $\ell(G)=\ell(N)+\ell(G / N)$.

Problem 10. Compute the derived and lower central series of the symmetric groups S_{2}, S_{3} and S_{4}.

Problem 11. Assume that G is a (non-trivial) nilpotent group. Prove that $\mathrm{Z}(G) \neq\{e\}$. Here, $\mathrm{Z}(G)$ is the center of G.
(Recall: G is nilpotent if and only if G admits a composition series $G=H_{0} \triangleright \ldots \triangleright H_{m}=\{e\}$ such that $\left[G, H_{\ell}\right] \subset H_{\ell+1}$ for every ℓ.)

Problem 12. Fix a finite simple group S. For a finite group G, choose a Jordan-Hölder series $\Sigma: G=G_{0} \triangleright G_{1} \triangleright \ldots \triangleright G_{n}=\{e\}$. Let $\operatorname{Mult}(S ; G)$ be defined as:

$$
\operatorname{Mult}(S ; G):=\#\left\{j: G_{j} / G_{j+1} \cong S\right\}
$$

Prove that $\operatorname{Mult}(S ; G)$ does not depend on the choice of the Jordan-Hölder series Σ.
Problem 12. Fix a finite simple group S. Let G be a finite group and $N \triangleleft G$ be a normal subgroup. Prove that $\operatorname{Mult}(S ; G)=\operatorname{Mult}(S ; N)+\operatorname{Mult}(S ; G / N)$.

