ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 6

Problem 1. Prove or disprove: the ring $R := \mathbb{Z}[x]/(x^2+1)$ is a principal ideal domain, that is R is a domain, and every ideal of R is generated by a single element.

Problem 2. Show that the ideal $\mathbb{Z}[x]$ generated by 2 and x is not principal.

Problem 3. (Radical of an ideal)

Fix a commutative ring A, and let $\mathfrak{a} \subset A$ be an ideal. Define

$$r(\mathfrak{a}) := \{ a \in A : a^n \in \mathfrak{a} \text{ for some } n \in \mathbb{Z}_{\geq 1} \}.$$

Prove the following statements for two ideals $\mathfrak{a}, \mathfrak{b}$ of A:

(i) $r(\mathfrak{a})$ is an ideal of A.

(ii)
$$r(r(\mathfrak{a})) = r(\mathfrak{a})$$
.

(iii)
$$r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$$

(iv)
$$r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$$

Problem 4. (Ideal quotients) Let \mathfrak{a} and \mathfrak{b} be two ideals of a commutative ring A. Set:

$$(\mathfrak{a}:\mathfrak{b}):=\{a\in A:a\mathfrak{b}\subseteq\mathfrak{a}\}.$$

- (i) Prove that $(\mathfrak{a} : \mathfrak{b})$ is an ideal of A.
- (ii) Compute the quotient ideal ((n) : (m)) in \mathbb{Z} .

Problem 5. State and prove the three Isomorphism Theorems for modules over rings.

Problem 6. Let R be a ring, and M be a left R-module. Assume that we have $p \in \operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ such that $p^2 = p$ (i.e. an *idempotent* map). Prove that $M \simeq M_1 \oplus M_2$, where M_1 is the kernel of p and M_2 is the image of p.

Problem 7. Give a counterexample to the assertion of Problem 6, if we do not impose the condition $p^2 = p$.

In the next two problems, we take $A = \mathbb{Z}$, $M = \mathbb{Z}/m\mathbb{Z}$ and $N = \mathbb{Z}/n\mathbb{Z}$.

Problem 8. Given $\alpha \in M$, define P_{α} to be the abelian group generated by two elements $\{e_1, e_2\}$, subject to the following relations:

$$m e_1 = 0$$
 and $n e_2 = \alpha e_1$.

Verify that we have a natural short exact sequence:

$$\varepsilon_{\alpha}: \quad 0 \longrightarrow M \longrightarrow P_{\alpha} \longrightarrow N \longrightarrow 0$$

Problem 9. Determine the necessary and sufficient conditions for two short exact sequences ε_{α} and ε_{β} to be isomorphic (i.e. where we can build three vertical isomorphisms making the two squares commute).