ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 7

Problem 1. Let R be a commutative ring, $S \subseteq R$ a multiplicatively closed set. Show that the addition and multiplication operations on $S^{-1} R$ are well-defined and give $S^{-1} R$ a ring struture.

Problem 2. Consider $R=\mathbb{Z} / 6 \mathbb{Z}$, and let $S=\{1,2,4\}$. Compute $S^{-1} R$.
Problem 3. Let R be a commutative ring, $S \subseteq R$ a multiplicatively closed set and M an R-module. Consider the relation \sim defined on $M \times S$:

$$
(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \quad \text { if, and only if, } \quad \exists t \in S \text { with } t\left(s^{\prime} m-s m^{\prime}\right)=0 \in M
$$

(i) Show that \sim defines an equivalence relation on $M \times S$.
(ii) Show that $S^{-1} M:=(M \times S) / \sim$ is an $S^{-1} R$-module with operations:

$$
(m, s)+\left(m^{\prime}, s^{\prime}\right)=\left(s^{\prime} m+s m^{\prime}, s s^{\prime}\right) \quad \text { and } \quad(a, t)(m, s)=(a m, t s)
$$

(iii) Prove that $S^{-1} M$ satisfies the universal property stated in Lecture 19.

Problem 4. (Nilradical of a commutative ring) Consider a commutative ring R and let $\mathcal{N} \subset R$ be the set of all nilpotent elements (see Lecture 18). Prove that

$$
\mathcal{N}=\bigcap_{\substack{\mathfrak{p} \subset R \\ \mathfrak{p} \text { prime ideal }}} \mathfrak{p} .
$$

Problem 5. Fix a commutative ring R and let $\mathfrak{a} \subset R$ be the set of all zero-divisors of R. Is \mathfrak{a} an ideal of R ?

Problem 6. Let R be a commutative ring, $n \in R$ be a nilpotent element, and $u \in R$ a unit (that is, u has a multiplicative inverse). Prove that $u+n$ is again a unit.

Problem 7. Let R be a commutative ring, and let $S \subseteq R$ be a multiplicatively closed set. Let \mathfrak{p} be an ideal which is maximal among the ideals in R not intersecting S. That is, maximal with respect to inclusion, from the following set:

$$
I_{S}=\{\mathfrak{a} \subseteq R: \mathfrak{a} \text { is an ideal of } R, \mathfrak{a} \cap S=\emptyset\}
$$

Prove that \mathfrak{p} is prime.

Problem 8. Let A, B be commutative rings and let $f: A \rightarrow B$ be a ring homomorphism. Let $\mathfrak{p} \subset A$ be a prime ideal and define $\mathfrak{q} \subset B$ to be the ideal generated by $f(\mathfrak{p})$ in B. Prove or disprove: \mathfrak{q} is a prime ideal.

Problem 9. (Jacobson radical)

Fix a commutative ring R and consider the following subset of R :

$$
\mathfrak{J}:=\{x \in R: 1-x y \text { is a unit for every } y \in R\} .
$$

(i) Prove that \mathfrak{J} is an ideal of R.
(ii) Prove that $\mathfrak{J}=\bigcap_{\substack{\mathfrak{m} \subset R \\ \mathfrak{m} \text { maximal ideal }}} \mathfrak{m}$.

Problem 10. Consider the ring $R=\mathbb{C}[x] /(f)$, where $f \in \mathbb{C}[x]$ is a nonzero polynomial. Let us write $f(x)=\prod_{i=1}^{\ell}\left(x-a_{i}\right)^{n_{i}}$, where $a_{1}, \ldots, a_{\ell} \in \mathbb{C}$ and $n_{1}, \ldots, n_{\ell} \in \mathbb{Z}_{\geq 1}$. Prove that

$$
R \xrightarrow{\sim} \prod_{i=1}^{\ell}\left(\mathbb{C}[x] /\left(\left(x-a_{i}\right)^{n_{i}}\right)\right)
$$

Problem 11. Let R be a commutative ring and fix a prime ideal \mathfrak{p} of R. Prove that $r\left(\mathfrak{p}^{n}\right)=\mathfrak{p}$ for every $n \geq 1$. (Here, $r(\cdot)$ denotes the radical ideal, as defined in Problem 3 of Homework 6.)

Problem 12. Let R be a commutative ring. Fix $\mathfrak{m} \subset R$ a maximal ideal, and let \mathfrak{p} be a prime ideal. Assume that there exists $n \geq 1$ such that $\mathfrak{m}^{n} \subseteq \mathfrak{p}$. Prove that $\mathfrak{m}=\mathfrak{p}$.

Problem 13. (Generalized prime avoidance)
Let R be a commutative ring and let $S \subset R$ be a set that is closed under multiplication and addition. Let $\mathfrak{p}_{i} \subset R$ for $i=1, \ldots, n$, be a a finite list of ideals of R where at most two of them are not prime. Prove that if $S \subset \bigcup_{i=1}^{n} \mathfrak{p}_{i}$, then there exists $j=1, \ldots, n$ with $S \subset \mathfrak{p}_{i}$. (Hint: Review the proof of the prime avoidance theorem.)

Problem 14. Let R be a commutative ring, $S \subset R$ a multiplicatively closed set and $\mathfrak{a} \subseteq R$ be an ideal. Prove that $S^{-1} \mathfrak{a}$ (the module of fractions of \mathfrak{a} relative to S) is the ideal in $S^{-1} R$ generated by $j_{S}(\mathfrak{a})$, where $j_{S}: R \rightarrow S^{-1} R$ is the natural ring homomorphism.

