ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 9

In all problems below, we assume R is a commutative ring.
Problem 1. Let M be an Artinian R-module. That is, for every descending chain of submodules $M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$, there exists $\ell \geq 0$ such that $M_{\ell}=M_{\ell+1}=\ldots$. Assume there is an injective R-linear map $f: M \rightarrow M$. Prove that f is an isomorphism.

Problem 2. Prove that a finite direct sum of Artinian rings is Artinian.
Problem 3. Show that an ideal $\mathfrak{q} \subset R$ is primary if, and only if, every zero divisor in R / \mathfrak{q} is nilpotent.

Problem 4. Let $\mathfrak{m} \subset R$ be a maximal ideal. Prove that \mathfrak{m}^{n} is primary for every $n \geq 1$.
Problem 5. Let $\mathfrak{q} \subset R$ be an ideal. If its radical ideal $r(\mathfrak{q})$ is maximal, then show that \mathfrak{q} is primary.

Problem 6. Assume R is Noetherian and let $\mathfrak{p} \subset R$ be a prime ideal. Prove that $R_{\mathfrak{p}}$ is Artinian if, and only if \mathfrak{p} is a minimal prime ideal of R.

Problem 7. Let $\mathfrak{a} \subset R$ be an ideal. Prove that

$$
r(\mathfrak{a})=\bigcap_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \mathfrak{p}
$$

Problem 8. Assume that R is Noetherian. For any ideal I, prove that there exists $n \geq 1$ such that $r\left(I^{n}\right) \subset I$.

Problem 9. Let $I \subsetneq R$ a proper ideal, and $\mathfrak{p} \subsetneq R$ a prime ideal such that $I \subset \mathfrak{p}$. Prove that $r(I) \subset \mathfrak{p}$.

Problem 10. Prove the following equality is true in the ring $\mathbb{K}[x, y]$, where \mathbb{K} is any field.

$$
\left(x^{2}, y\right) \cap\left(x, y^{2}\right)=(x, y)^{2}
$$

Prove that $(x, y)^{2} \subset \mathbb{K}[x, y]$ is a primary ideal. (Hence, primary does not imply irreducible.)
Problem 11. Let $R=\mathbb{K}[x, y], I=\left(x^{2}, x y\right) \subset R$. Take $\mathfrak{p}=(x)$ and $\mathfrak{q}_{n}=\left(x^{2}, x y, y^{n}\right)$ for each $n \geq 2$. Prove that
(i) \mathfrak{p} is a prime ideal. Each \mathfrak{q}_{n} is primary and $r\left(\mathfrak{q}_{n}\right)=(x, y)$.
(ii) $\mathfrak{p} \cap \mathfrak{q}_{n}=I$.

Hence, we have infinitely many distinct primary decompositions. Notice that they all have the same set of primes $\{(x),(x, y)\}$.

Problem 12. Prove that $(4, t) \subset \mathbb{Z}[t]$ is a primary ideal. Verify that $r((4, t))=(2, t)$ which is a maximal ideal in $\mathbb{Z}[t]$. Prove that $(2, t)^{2} \subsetneq(4, t) \subsetneq(2, t)$. Hence, a primary ideal need not be power of a prime.

Problem 13. Consider a primary ideal \mathfrak{q} in R with radical $r(\mathfrak{q})=\mathfrak{p}$. Let $S \subsetneq R$ be a multiplicatively closed set.
(i) Prove that $S \cap \mathfrak{q} \neq \emptyset$ if, and only if, $S \cap \mathfrak{p} \neq \emptyset$.
(ii) Assume that $S \cap \mathfrak{p}=\emptyset$. Show that $S^{-1} \mathfrak{q}$ is a primary ideal in $S^{-1} R$ and $r\left(S^{-1} \mathfrak{q}\right)=S^{-1} \mathfrak{p}$ in $S^{-1} R$.

We say $\mathfrak{a} \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is a monomial ideal if it is generated by monomials in the variables x_{1}, \ldots, x_{n}.

Problem 14. Characterize monomial ideals in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ that are:
(i) prime;
(ii) irreducible;
(iii) radical (i.e., $r(\mathfrak{a})=\mathfrak{a}$);
(iv) primary.

Bonus problem: Find algorithms for computing:
(i) the radical of a monomial ideal;
(ii) a primary decomposition of a monomial ideal.

