ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 10

In all problems below, we assume R is a commutative ring.

Problem 1. Assume R is an integral domain. Prove that an ideal \mathfrak{a} is free as an R-module if and only if \mathfrak{a} is principal (i.e. admits one generator).

Problem 2. Assume R is an integral domain, and let M be a free R-module. Use the methods from Lecture 27 to show that any two maximal linearly independent subsets of M have the same cardinality.

Problem 3. Assume that for all finitely generated free modules M over R with rank n we have that every submodule of M is free of rank $\leq n$. Prove that R is a PID.

Problem 4. Prove that $\left(\mathbb{Q}_{>0}, *\right)$ is a free \mathbb{Z}-module and determine a basis for it.
Problem 5. Fix a module M over R and let $T: M \rightarrow M$ be an R-linear map. Prove that M is a module over $R[x]$ with scalar multiplication $f(x) \cdot m=f(T)(m)$ for all m in M.

Problem 6. Let \mathbb{K} be a field and $g(x) \in \mathbb{K}[x] \backslash\{0\}$. Show that $\mathbb{K}[x] /(g(x))$ is a \mathbb{K}-vector space of dimension $\operatorname{deg}(g)$.

Problem 7. Prove or disprove:
(i) $(\mathbb{Q},+)$ is a free \mathbb{Z}-module;
(ii) $\mathbb{K}(x)$ is a free $\mathbb{K}[x]$-module for any field \mathbb{K}.

Problem 8. Assume M_{1}, \ldots, M_{r} are R-modules and let $N_{i} \subset M_{i}$ be submodules. Show that:

$$
\frac{\bigoplus_{i=1}^{r} M_{i}}{\bigoplus_{i=1}^{r} N_{i}} \simeq \bigoplus_{i=1}^{r} \frac{M_{i}}{N_{i}}
$$

Problem 9. Consider a PID R and let $\mathbf{v}=\left(a_{1}, \ldots, a_{n}\right)$ be a vector in R^{n}. Prove that we can extend \mathbf{v} to a basis of the free module R^{n} if and only if $\left(a_{1}, \ldots, a_{n}\right)=1$.

Problem 10. (Modules over non commutative rings) The following exercise provides an example of a non-commutative ring A for which $A^{n} \simeq A^{m}$ for all $m, n \in \mathbb{N}$.

Let V be an infinite-dimensional vector space over \mathbb{R} with a countable basis $\left\{v_{n}: n \in \mathbb{N}\right\}$. Let $A=\operatorname{End}_{\mathbb{R}} V$. Let $T, T^{\prime} \in A$ be defined by $T\left(v_{2 n}\right)=v_{n}, T\left(v_{2 n-1}\right)=0, T^{\prime}\left(v_{2 n}\right)=0$, $T^{\prime}\left(v_{2 n-1}\right)=v_{n}$ for all $n \geq 1$. Prove that $\left\{T, T^{\prime}\right\}$ is a basis for A as a left A-module. Thus, $A \simeq A^{2}$. Prove that $A^{n} \simeq A^{m}$ for any $m, n \in \mathbb{N}$.

Problem 11. (Free modules with infinite rank)

Let R be a PID and let M be a free R-module. Let F be a submodule of M. We aim to show that F is free.

Let $\left\{v_{i}\right\}_{i} \in I$ is a basis for M let $M_{J}=R\left(v_{j}: j \in J\right)$. and $F \neq(0)$.
(i) Consider the sets $F_{J}=F \cap M_{J}$ where $J \subset I$, and the set of triples

$$
S=\left\{\left(F_{J}, J^{\prime}, w\right): J \subseteq I, w: J^{\prime} \rightarrow F_{J} \text { is a basis for } F_{J} \text { indexed by } J^{\prime} \subset J\right\} .
$$

Show that S is a non-empty set.
(ii) Show that the following relation \leq on S defines a partial order on S :

$$
\left(F_{J}, J^{\prime}, w\right) \leq\left(F_{K}, K^{\prime}, u\right) \text { if } J^{\prime} \subset K^{\prime} \text { and } u_{\left.\right|_{J^{\prime}}}=w
$$

In other words, the basis u for F_{K} is an extension of the basis w for F_{J}.
(iii) Use Zorn's Lemma on S and show that a maximal element of S has $J=I$, so $F_{J}=F$. (Hint: Use the technique in the proof of Theorem 2 of Lecture 27 (the case where $\operatorname{rank}(M)<\infty)$.)
(iv) Conclude that there exists a basis for F indexed by a subset of I (so the rank of a module is well-defined and $\operatorname{rank}(F) \leq \operatorname{rank}(M)$.)

Problem 12. Classify all abelian groups of order 32,36 and 200.
Problem 13. Prove or disprove:
(i) $(\mathbb{Z} / 8 \mathbb{Z})^{*} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{*} \times(\mathbb{Z} / 3 \mathbb{Z})^{*}$;
(ii) $(\mathbb{Z} / 16 \mathbb{Z})^{*} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{*} \times(\mathbb{Z} / 5 \mathbb{Z})^{*}$;

