ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 12

In all problems below, we assume R is a commutative ring and \mathbb{K} is a field.

Problem 1. (Nakayama's Lemma v2)

Consider a finitely generated R-module M and an ideal I of R included in the Jacobson radical of R (see Problem 9, HW 7). If $I M=M$, prove that $M=0$.

Problem 2. (Nakayama's Lemma v3)

Consider a finitely generated R-module M and an ideal I of R. If $M=I M$, then prove that there exists an element $a \in I$ with $m=a m$ for all $m \in M$ (equivalently, $(1-a) M=0$.).
(Hint for Problems 1 and 2: Follow the proof of Nakayama's lemma discussed in Lecture 33.)

Problem 3. (Nakayama's Lemma v3 fails over non-commutative rings)

Consider a non-commutative ring A with no zero divisors and let I be a f.g. proper nonzero idempotent ideal (i.e., $I^{2}=I$). Show that Nakayama's Lemma v3 from Problem 2 fails for $M=I$.
(Note: Examples of such rings arise in Lie Theory. We can take \mathfrak{g} to be a perfect Lie algebra and let $I=\mathfrak{g} A$ be the augmentation ideal of its enveloping algebra $A=U(\mathfrak{g}))$

Problem 4. (An application of Nakayama's lemma due to Vasconcelos)
The goal of this exercise is to extend Problem 12 HW8 to the non-Noetherian case. More precisely, assume M is a finitely generated R-module and let $f: M \rightarrow M$ be a surjective R-linear map. We wish to show that f is injective, and hence an isomorphism.
(i) Show that M becomes an $R[x]$ mode via $P(x) \cdot m=P(f)(m)$.
(ii) Show that M is a finitely generated $R[x]$-module with the structure defined in the previous item.
(iii) Show that ideal $I=(x) \subsetneq R[x]$ satisfies $I M=M$.
(iv) Use Problem 2 to find a polynomial $P(x) \in I$ with $m=P(x) m$ for all $m \in M$.
(v) Use item (iv) to conclude that $\operatorname{Ker}(f)=\{0\}$.

Problem 5. Show that bases of vector spaces of any dimension (defined as linearly independent spanning sets) are maximal linearly independent sets.

Problem 6. Consider a \mathbb{K}-vector space V and let $W \subset V$ be a subspace. Show that:

$$
(V / W)^{*}=\left\{\xi \in V^{*}: \xi_{\left.\right|_{W}}=0\right\}
$$

Problem 7. Consider a collection $\left\{V_{i}: i \in I\right\}$ of finite-dimensional \mathbb{K}-vector spaces and let W be a vector space.
(i) Prove that $\operatorname{Hom}_{\mathbb{K}}\left(\bigoplus_{i \in I} V_{i}, W\right) \simeq \prod_{i \in I} \operatorname{Hom}_{\mathbb{K}}\left(V_{i}, W\right)$.
(ii) Prove that $\left(\bigoplus_{i \in I} V_{i}\right)^{*} \simeq \prod_{i \in I}\left(V_{i}\right)^{*}$.
(In both items, direct products/sums of vector spaces are defined as the corresponding operations on \mathbb{K}-modules.)

Problem 8. Let V and W be two finite-dimensional \mathbb{K} vector spaces, with bases B_{V} and B_{W}, respectively. Assume $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$. Consider any linear transformation $f: V \rightarrow W$ and its corresponding dual map $f^{*}: W^{*} \rightarrow V^{*}$.
(i) Show that if $A=[f]_{B_{V}, B_{W}}$ is the $m \times n$ matrix representative of f with respect to the bases B_{V} and B_{W}, then $A^{T}=\left[f^{*}\right]_{\left(B_{W}\right)^{*},\left(B_{V}\right)^{*}}$ is the matrix representative of f^{*} with respect to the dual bases $\left(B_{W}\right)^{*}$ and $\left(B_{V}\right)^{*}$.
(ii) Show that $W^{*} \simeq(\operatorname{Im} f)^{*} \oplus \operatorname{Ker}\left(f^{*}\right)$, where we view $(\operatorname{Im} f)^{*} \subset W^{*}$ by extending a basis of $\operatorname{Im} f$ to a basis of W and taking duals.
(iii) Show that the images of f and f^{*} have the same dimension, and conclude from this that the (column) ranks of A and A^{T} agree.

Problem 9. Show that given two \mathbb{K}-vector spaces V_{1} and V_{2}, the tensor product $V_{1} \otimes_{\mathbb{K}} V_{2}$ defined via universal property (see Lecture 34) is unique up to unique isomorphism. Conclude from this that for any \mathbb{K}-vector space V, we have

$$
V \otimes_{\mathbb{K}} \mathbb{K} \simeq \mathbb{K} \otimes_{\mathbb{K}} V \simeq V
$$

Problem 10. Consider three \mathbb{K}-vector spaces V_{1}, V_{2} and W. Show that:

$$
\left(V_{1} \oplus V_{2}\right) \otimes_{\mathbb{K}} W \simeq\left(V_{1} \otimes_{\mathbb{K}} W\right) \oplus\left(V_{2} \otimes_{\mathbb{K}} W\right)
$$

Problem 11. Consider two matrices $X_{1} \in \operatorname{Mat}_{m_{1} \times n_{1}}(\mathbb{K})$ and $X_{2}=\operatorname{Mat}_{m_{2} \times n_{2}}(\mathbb{K})$ representing linear transformations $f_{1}: V_{1} \rightarrow W_{1}$ and $f_{2}: V_{2} \rightarrow W_{2}$ with $\operatorname{dim} V_{i}=n_{i}$ and $\operatorname{dim} W_{i}=m_{i}$ for $i=1,2$. Write down the matrix representing $f_{1} \otimes f_{2}:\left(V_{1} \otimes_{\mathbb{K}} V_{2}\right) \rightarrow\left(W_{1} \otimes_{\mathbb{K}} W_{2}\right)$ using the matrices X_{1} and X_{2}.

Problem 12. Apply the construction from Problem 11 to the following matrices:

$$
X_{1}=\left(\begin{array}{cc}
0 & -1 \\
0 & -1
\end{array}\right) \quad \text { and } \quad X_{2}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

Problem 12. Consider two square matrices A_{1} and A_{2} of sizes $n \times n$ and $m \times m$, respectively. Let $\left\{\lambda_{i}: i=1, \ldots, n\right\}$ and $\left\{\mu_{j}: j=1, \ldots, m\right\}$ be the eigenvalues of A_{1} and A_{2}, counted with multiplicity. Show that the eigenvalues of the matrix $A_{1} \otimes A_{2}$ (constructed in Problem 10), counted with multiplicity, are given by $\left\{\lambda_{i} \mu_{j}: i=1, \ldots, n, j=1, \ldots m\right\}$.

Problem 13. Consider three \mathbb{K}-vector spaces U, V, W. Assume V is finite-dimensional. Show that $\operatorname{Hom}_{\mathbb{K}}(V, U) \otimes W \simeq \operatorname{Hom}_{\mathbb{K}}(V, U \otimes W)$ by writing an explicit isomorphism. (Hint: When $U=\mathbb{K}$, the statement is the Hom-tensor adjointness theorem)

Problem 14. Consider two finite-dimensional \mathbb{K}-vector spaces V and W, each with two bases B_{1}, B_{1}^{\prime} and B_{2}, B_{2}^{\prime}, respectively. Describe the change of bases matrix for $V \otimes_{\mathbb{K}} W$ with respect to the bases $B_{1} \times B_{2}$ and $B_{1}^{\prime} \times B_{2}^{\prime}$ (ordered appropriately).

Problem 15. Consider \mathbb{K}-vector spaces U, V, W. Using the universal property of tensor products show that
(i) there exists a unique \mathbb{K}-linear isomorphism $\phi: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} W \otimes_{\mathbb{K}} V$ satisfying $\phi(v \otimes$ $w)=w \otimes v$ for all $v \in V, w \in W ;$
(ii) there exists a unique \mathbb{K}-linear isomorphism $\beta:\left(U \otimes_{\mathbb{K}} V\right) \otimes_{\mathbb{K}} W \xrightarrow{\simeq} U \otimes_{\mathbb{K}}\left(V \otimes_{\mathbb{K}} W\right)$ satisfying $\beta((u \otimes v) \otimes w)=u \otimes(v \otimes w)$.

Problem 16. Consider two finite-dimensional \mathbb{K}-vector spaces V and W, with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$. Consider the following composition of isomorphisms:

$$
\alpha: \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right) \xrightarrow{\simeq} V \otimes_{\mathbb{K}} W \xrightarrow{\phi} W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right)
$$

where the first and the last maps arise from Hom-tensor adjointness, and ϕ is the map defined in Problem 15 (i). Show that under the identifications $\operatorname{Mat}_{m \times n}(\mathbb{K}) \simeq \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right)$ and $\operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right) \simeq \operatorname{Mat}_{n \times m}(\mathbb{K})$, the map α corresponds to taking the transpose of a matrix.

Problem 17. (Rank of tensors)

Consider two \mathbb{K}-vector spaces V and W. For any $u \in V \otimes_{\mathbb{K}} W$ we define the rank of u as the smallest non-negative integer r for which u admits an expression:

$$
\begin{equation*}
u=\sum_{i=1}^{r} v_{i} \otimes w_{i} \quad v_{i} \in V, w_{i} \in W \tag{1}
\end{equation*}
$$

(i) Assume that $\operatorname{rank}(u)=r$ and write u as in (1). Show that the sets $\left\{v_{i}: i=1, \ldots, r\right\}$ and $\left\{w_{i}: i=1, \ldots, r\right\}$ are linearly independent subsets of V and W, respectively.
(ii) Conversely, if $u=\sum_{i=1}^{s} a_{i} \otimes b_{i}$ where the sets $\left\{a_{i}: i=1, \ldots, s\right\} \subset V$ and $\left\{b_{i}: i=\right.$ $1, \ldots, s\} \subset W$ are linearly independent, $\operatorname{then} \operatorname{rank}(u)=s$.
(iii) Assume V and W are finite-dimensional. Hom-tensor adjointness yields isomophisms

$$
\varphi_{1}: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right), \quad \varphi_{2}: W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right)
$$

Consider the isomorphism ϕ from Problem 15 item (i) and let $u_{1}=\varphi_{1}(u)$, and $u_{2}=$ $\left(\varphi_{2} \circ \phi\right)(u)$. Show that $\operatorname{rank}(u)=\operatorname{dim} \operatorname{Im}\left(u_{1}\right)=\operatorname{dim} \operatorname{Im}\left(u_{2}\right)$.

