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In all problems below, we assume R is a commutative ring and K is a field.

Problem 1. (Nakayama’s Lemma v2)
Consider a finitely generated R-module M and an ideal I of R included in the Jacobson

radical of R (see Problem 9, HW 7). If IM = M , prove that M = 0.

Problem 2. (Nakayama’s Lemma v3)
Consider a finitely generated R-module M and an ideal I of R. If M = IM , then prove

that there exists an element a ∈ I with m = am for all m ∈M (equivalently, (1−a)M = 0.).

(Hint for Problems 1 and 2: Follow the proof of Nakayama’s lemma discussed in Lecture 33.)

Problem 3. (Nakayama’s Lemma v3 fails over non-commutative rings)
Consider a non-commutative ring A with no zero divisors and let I be a f.g. proper non-

zero idempotent ideal (i.e., I2 = I). Show that Nakayama’s Lemma v3 from Problem 2 fails
for M = I.

(Note: Examples of such rings arise in Lie Theory. We can take g to be a perfect Lie
algebra and let I = gA be the augmentation ideal of its enveloping algebra A = U(g))

Problem 4. (An application of Nakayama’s lemma due to Vasconcelos)
The goal of this exercise is to extend Problem 12 HW8 to the non-Noetherian case. More

precisely, assume M is a finitely generated R-module and let f : M → M be a surjective
R-linear map. We wish to show that f is injective, and hence an isomorphism.

(i) Show that M becomes an R[x] mode via P (x) ·m = P (f)(m).

(ii) Show that M is a finitely generated R[x]-module with the structure defined in the pre-
vious item.

(iii) Show that ideal I = (x) ( R[x] satisfies IM = M .

(iv) Use Problem 2 to find a polynomial P (x) ∈ I with m = P (x)m for all m ∈M .

(v) Use item (iv) to conclude that Ker(f) = {0}.

Problem 5. Show that bases of vector spaces of any dimension (defined as linearly inde-
pendent spanning sets) are maximal linearly independent sets.

Problem 6. Consider a K-vector space V and let W ⊂ V be a subspace. Show that:

(V/W )∗ = {ξ ∈ V ∗ : ξ|W = 0}.
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Problem 7. Consider a collection {Vi : i ∈ I} of finite-dimensional K-vector spaces and let
W be a vector space.

(i) Prove that HomK(
⊕
i∈I

Vi,W ) '
∏
i∈I

HomK(Vi,W ).

(ii) Prove that (
⊕
i∈I

Vi)
∗ '

∏
i∈I

(Vi)
∗.

(In both items, direct products/sums of vector spaces are defined as the corresponding
operations on K-modules.)

Problem 8. Let V and W be two finite-dimensional K vector spaces, with bases BV and
BW , respectively. Assume dimV = n and dimW = m. Consider any linear transformation
f : V → W and its corresponding dual map f ∗ : W ∗ → V ∗.

(i) Show that if A = [f ]BV ,BW
is the m× n matrix representative of f with respect to the

bases BV and BW , then AT = [f ∗](BW )∗,(BV )∗ is the matrix representative of f ∗ with
respect to the dual bases (BW )∗ and (BV )∗.

(ii) Show that W ∗ ' (Im f)∗⊕Ker(f ∗), where we view (Im f)∗ ⊂ W ∗ by extending a basis
of Im f to a basis of W and taking duals.

(iii) Show that the images of f and f ∗ have the same dimension, and conclude from this
that the (column) ranks of A and AT agree.

Problem 9. Show that given two K-vector spaces V1 and V2, the tensor product V1 ⊗K V2
defined via universal property (see Lecture 34) is unique up to unique isomorphism. Conclude
from this that for any K-vector space V , we have

V ⊗K K ' K⊗K V ' V.

Problem 10. Consider three K-vector spaces V1, V2 and W . Show that:

(V1 ⊕ V2)⊗K W ' (V1 ⊗K W )⊕ (V2 ⊗K W ).

Problem 11. Consider two matrices X1 ∈ Matm1×n1(K) and X2 = Matm2×n2(K) represent-
ing linear transformations f1 : V1 → W1 and f2 : V2 → W2 with dimVi = ni and dimWi = mi

for i = 1, 2. Write down the matrix representing f1 ⊗ f2 : (V1 ⊗K V2) → (W1 ⊗K W2) using
the matrices X1 and X2.

Problem 12. Apply the construction from Problem 11 to the following matrices:

X1 =

(
0 −1
0 −1

)
and X2 =

 1 0 3
−1 1 0

2 0 1

 .
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Problem 12. Consider two square matrices A1 and A2 of sizes n× n and m×m , respec-
tively. Let {λi : i = 1, . . . , n} and {µj : j = 1, . . . ,m} be the eigenvalues of A1 and A2,
counted with multiplicity. Show that the eigenvalues of the matrix A1 ⊗A2 (constructed in
Problem 10), counted with multiplicity, are given by {λiµj : i = 1, . . . , n, j = 1, . . .m}.

Problem 13. Consider three K-vector spaces U, V,W . Assume V is finite-dimensional.
Show that HomK(V, U)⊗W ' HomK(V, U ⊗W ) by writing an explicit isomorphism. (Hint:
When U = K, the statement is the Hom-tensor adjointness theorem)

Problem 14. Consider two finite-dimensional K-vector spaces V and W , each with two
bases B1, B

′
1 and B2, B

′
2, respectively. Describe the change of bases matrix for V ⊗KW with

respect to the bases B1 ×B2 and B′1 ×B′2 (ordered appropriately).

Problem 15. Consider K-vector spaces U, V,W . Using the universal property of tensor
products show that

(i) there exists a unique K-linear isomorphism φ : V ⊗K W
' // W ⊗K V satisfying φ(v⊗

w) = w ⊗ v for all v ∈ V , w ∈ W ;

(ii) there exists a unique K-linear isomorphism β : (U ⊗K V )⊗K W
' // U ⊗K (V ⊗K W )

satisfying β((u⊗ v)⊗ w) = u⊗ (v ⊗ w).

Problem 16. Consider two finite-dimensional K-vector spaces V and W , with dimV = n
and dimW = m. Consider the following composition of isomorphisms:

α : HomK(V ∗,W )
' // V ⊗K W

φ // W ⊗K V
' // HomK(W ∗, V )

where the first and the last maps arise from Hom-tensor adjointness, and φ is the map de-
fined in Problem 15 (i). Show that under the identifications Matm×n(K) ' HomK(V ∗,W )
and HomK(W ∗, V ) ' Matn×m(K), the map α corresponds to taking the transpose of a matrix.

Problem 17. (Rank of tensors)
Consider two K-vector spaces V and W . For any u ∈ V ⊗K W we define the rank of u as

the smallest non-negative integer r for which u admits an expression:

(1) u =
r∑
i=1

vi ⊗ wi vi ∈ V,wi ∈ W.

(i) Assume that rank(u) = r and write u as in (1). Show that the sets {vi : i = 1, . . . , r}
and {wi : i = 1, . . . , r} are linearly independent subsets of V and W , respectively.

(ii) Conversely, if u =
∑s

i=1 ai ⊗ bi where the sets {ai : i = 1, . . . , s} ⊂ V and {bi : i =
1, . . . , s} ⊂ W are linearly independent, then rank(u) = s.

(iii) Assume V and W are finite-dimensional. Hom-tensor adjointness yields isomophisms

ϕ1 : V ⊗K W
' // HomK(V ∗,W ), ϕ2 : W ⊗K V

' // HomK(W ∗, V ).

Consider the isomorphism φ from Problem 15 item (i) and let u1 = ϕ1(u), and u2 =
(ϕ2 ◦ φ)(u). Show that rank(u) = dim Im(u1) = dim Im(u2).


