ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 12

In all problems below, we assume \mathbb{K} is a field, and U, V and W are \mathbb{K}-vector spaces. Notation: $T^{n}(V)=V^{\otimes n}$ is the n-fold tensor power of $V ; S^{n}(V)$ and $\bigwedge^{n}(V)$ denote the symmetric and exterior n-fold power of V.

Problem 1. Let $k \in \mathbb{Z}_{\geq 1}$ and $v_{1}, \ldots, v_{k} \in V$. Show that $v_{1} \wedge \ldots \wedge v_{k} \in \bigwedge^{k} V$ is non-zero if, and only if, $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Problem 2. Let $P \in \operatorname{End}_{\mathbb{K}}(V)$ satisfying $P^{2}=P$ (i.e. P is a projection). Show that $V \simeq \operatorname{ker}(P) \oplus \operatorname{Im}(P)$.

Problem 3. ($S^{n}(V)$ as a subspace of $T^{n}(V)$)
Assume $\operatorname{char}(\mathbb{K})=0$ and consider $S: T^{n}(V) \rightarrow T^{n}(V)$ given by $S(\xi)=\frac{1}{n!} \sum_{\sigma \in \mathbb{S}_{n}} \sigma(\xi)$.
(i) Show that $S^{2}=S$ and, furthermore,
$\operatorname{ker}(S)=\left\langle v_{1} \otimes \ldots v_{n}-v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_{i} \otimes v_{i+2} \ldots \otimes v_{n}: 1 \leq i \leq n-1, v_{1}, \ldots, v_{n} \in V\right\rangle$.
(ii) Conclude that $\operatorname{Im}(S) \simeq S^{n}(V)$ as \mathbb{K}-vector spaces.

Problem 4. ($\bigwedge^{n}(V)$ as a subspace of $\left.T^{n}(V)\right)$
Assume $\operatorname{char}(\mathbb{K})=0$ and consider $A: T^{n}(V) \rightarrow T^{n}(V)$ given by $A(\xi)=\frac{1}{n!} \sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sign}(\sigma) \sigma(\xi)$.
(i) Show that $A^{2}=A$ and furthermore,
$\operatorname{ker}(A)=\left\langle v_{1} \otimes \ldots v_{n}+v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_{i} \otimes v_{i+2} \ldots \otimes v_{n}: 1 \leq i \leq n-1, v_{1}, \ldots, v_{n} \in V\right\rangle$.
(ii) Conclude that $\operatorname{Im}(A) \simeq \bigwedge^{n}(V)$ as \mathbb{K}-vector spaces.

Problem 5. Prove the following isomorphisms of \mathbb{K}-vector spaces for all $n \in \mathbb{Z}_{\geq 0}$:

$$
S^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} S^{i}(V) \otimes S^{n-i}(W) \text { and } \bigwedge^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} \bigwedge^{i}(V) \otimes \bigwedge^{n-i}(W)
$$

Problem 6. Let $v_{1}, \ldots, v_{k} \in V$ be a collection of linearly independent vectors. Let $\omega \in \bigwedge^{p}(V)$. Show that ω can be written as $\omega=\sum_{i=1}^{r} v_{i} \wedge \psi_{i}$ for some $\psi_{1}, \ldots \psi_{r} \in \bigwedge^{p-1}(V)$ if, and only if, $v_{1} \wedge \ldots v_{r} \wedge \omega=0 \in \bigwedge^{p+r}(V)$.

Problem 7. Show that the multiplication maps $S^{k}(V) \times S^{\ell}(V) \rightarrow S^{k+l}(V)$ and $\bigwedge^{k}(V) \times$ $\bigwedge^{\ell}(V) \rightarrow \bigwedge^{k+\ell}(V)$ defined in Lecture 36 are well-defined and are obtained from the multiplication map $\phi: T^{k}(V) \times T^{\ell}(V) \rightarrow T^{k+\ell}(V)$ composed with the corresponding natural projections to the symmetric and exterior powers of V.

Problem 8. Assume char $(\mathbb{K})=0$ and consider the map $\varphi: S^{k}(V) \times S^{\ell}(V) \rightarrow S^{k+\ell}(V)$ defined on the indecomposable tensors via

$$
\varphi(\xi, \eta)=\frac{1}{\binom{k+\ell}{k}} \sum_{\sigma \in G} \sigma(\xi \otimes \eta) \quad \text { for } G=\mathbb{S}_{k+\ell} /\left(\mathbb{S}_{k} \times \mathbb{S}_{\ell}\right), \xi \in S^{k}(V), \eta \in S^{\ell}(V)
$$

where we view $\mathbb{S}_{k} \times \mathbb{S}_{\ell} \subset \mathbb{S}_{k+\ell}$ as permutations of $\{1, \ldots, k\}$ and $\{k+1, \ldots, k+\ell\}$.
(i) Check that φ is bilinear, so it yields a unique linear map $\bar{\varphi}: S^{k}(V) \otimes S^{\ell}(V) \rightarrow S^{k+\ell}(V)$.
(ii) Show that $\bar{\varphi}$ defines an associative multiplication map on $S^{\bullet}(V)$.
(iii) Show that $\bar{\varphi}$ fits into the natural commutative diagram involving the multiplication map on $T^{\bullet}(V)$, the projection $T^{n}(V) \rightarrow S^{n}(V)$ and the inclusion $S^{n}(V) \hookrightarrow T^{n}(V)$ defined in Problem 3:

Problem 9. Prove that $V \otimes V \simeq S^{2}(V) \oplus \bigwedge^{2}(V)$ by writing the explicit isomorphisms.
Problem 10. Assume V is finite-dimensional. Pick a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ for V.
(i) Show that $\psi_{B}: \bigwedge^{n}(V) \rightarrow \mathbb{K}$ given by $\psi_{B}\left(\alpha\left(v_{1} \wedge \ldots \wedge v_{n}\right)\right)=\alpha$ is an isomorphism.
(ii) If B^{\prime} is another basis for V, and A is the change of bases matrix from B^{\prime} to B, show that $\psi_{B}(\xi)=\operatorname{det}(A) \psi_{B^{\prime}}(\xi)$ for all $\xi \in \Lambda^{n}(V)$.

Problem 11. Assume char $(\mathbb{K})=0$. Consider a \mathbb{K}-linear map $f: V \rightarrow W$ and the associated maps $S^{n}(f): S^{n}(V) \rightarrow S^{n}(V)$ and $\bigwedge^{n}(f): \bigwedge^{n}(V) \rightarrow \bigwedge^{n}(V)$.
(i) Show that these constructions are compatible with compositions, i.e. if $f: V \rightarrow U$, and $g: U \rightarrow W$ are \mathbb{K}-linear, then

$$
S^{n}(g \circ f)=S^{n}(g) \circ S^{n}(f) \quad \text { and } \quad \bigwedge^{n}(g \circ f)=\bigwedge^{n}(g) \circ \bigwedge^{n}(f)
$$

(ii) Let $n=\operatorname{dim}(V)$ and pick $f \in \operatorname{End}_{\mathbb{K}}(V)$. Show that the following diagram commutes

Here, the bottom map is multiplication by $\operatorname{det}(f) \in \mathbb{K}$, and the vertical maps are any fixed isomorphism from Problem 10.
(iii) In particular, if $V=U=W$ have dimension n and f and g correspond to two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, show that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Problem 12. Assume $\operatorname{char}(\mathbb{K})=0$. Prove the row expansion formula for determinants of square matrices using $\operatorname{det}(f)=\bigwedge^{n}(f): \bigwedge^{n}\left(\mathbb{K}^{n}\right) \rightarrow \bigwedge^{n}\left(\mathbb{K}^{n}\right)$ where $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is multiplication by the corresponding matrix.

Problem 13. (Determinants vs. Permanents of singular matrices)

Assume char $(\mathbb{K})=0$ and consider the endomorphism $f: \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$ defined by multiplication by the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
(i) Compute $\bigwedge^{2}(f): \bigwedge^{2}\left(\mathbb{K}^{2}\right) \rightarrow \bigwedge^{2}\left(\mathbb{K}^{2}\right)$.
(ii) Compute $S^{2}(f): S^{2}\left(\mathbb{K}^{2}\right) \rightarrow S^{2}\left(\mathbb{K}^{2}\right)$.
(iii) Compute $S^{3}(f): S^{3}\left(\mathbb{K}^{2}\right) \rightarrow S^{3}\left(\mathbb{K}^{2}\right)$.

Problem 14. Let $X \in \mathrm{GL}_{n}(\mathbb{K})$. We say X admits a Gaussian decomposition if it can be written as a product

$$
X=X^{-} X^{0} X^{+},
$$

where X^{0} is a diagonal matrix, X^{+}is an upper triangular matrix (i.e. $X_{i j}^{+}=0$ for $i>j$) with ones along the diagonal, and X^{-}is an lower triangular matrix (i.e. $X_{i j}^{-}=0$ for $i<j$) with ones along the diagonal.
(i) Show that if X admits a Gaussian decomposition then it is unique. (Hint: Prove the uniqueness for diagonal matrices admitting a Gaussian decomposition.)
(ii) Show that a matrix $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{K})$ admits a Gaussian decomposition if, and only if, $a \neq 0$. Compute explicit formulas for X^{-}, X^{0} and X^{+}.

Bonus Problem: Consider $X \in \mathrm{GL}_{n}(\mathbb{K})$. The goal of this exercise is to show that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.
(i) Show that if X admits a Gaussian decomposition, then all principal minors $\Delta_{1, \ldots, i}^{1, \ldots, i}$ (for $i=1, \ldots, n$) are non-zero.
(ii) If X admits a Gaussian decomposition, show that $X_{11}^{0}=X_{11}$ and $X_{i i}^{0}=\Delta_{1, \ldots, i}^{1, \ldots, i} / \Delta_{1, \ldots, i-1}^{1, \ldots, i-1}$ for all $i=2, \ldots, n$.
(iii) Furthermore, prove that $X_{j i}^{-}=\Delta_{1, \ldots, i}^{1, \ldots, i-1, j} / \Delta_{1, \ldots, i}^{1, \ldots, i}$ and $X_{i j}^{+}=\Delta_{1, \ldots, i-1, j}^{1, \ldots, i} / \Delta_{1, \ldots, i}^{1, \ldots, i}$ for all $i \leq j$.
(iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.

