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In all problems below, we assume K is a field, and U , V and W are K-vector spaces.
Notation: T n(V ) = V ⊗n is the n-fold tensor power of V ; Sn(V ) and

∧n(V ) denote the
symmetric and exterior n-fold power of V .

Problem 1. Let k ∈ Z≥1 and v1, . . . , vk ∈ V . Show that v1 ∧ . . . ∧ vk ∈
∧k V is non-zero if,

and only if, {v1, . . . , vk} is linearly independent.

Problem 2. Let P ∈ EndK(V ) satisfying P 2 = P (i.e. P is a projection). Show that
V ' ker(P )⊕ Im(P ).

Problem 3. (Sn(V ) as a subspace of T n(V ))

Assume char(K) = 0 and consider S : T n(V )→ T n(V ) given by S(ξ) =
1

n!

∑
σ∈Sn

σ(ξ).

(i) Show that S2 = S and, furthermore,

ker(S) = 〈v1⊗ . . . vn−v1⊗ . . .⊗vi−1⊗vi+1⊗vi⊗vi+2 . . .⊗vn : 1 ≤ i ≤ n−1, v1, . . . , vn ∈ V 〉.

(ii) Conclude that Im(S) ' Sn(V ) as K-vector spaces.

Problem 4. (
∧n(V ) as a subspace of T n(V ))

Assume char(K) = 0 and considerA : T n(V )→ T n(V ) given byA(ξ) =
1

n!

∑
σ∈Sn

sign(σ)σ(ξ).

(i) Show that A2 = A and furthermore,

ker(A) = 〈v1⊗ . . . vn+v1⊗ . . .⊗vi−1⊗vi+1⊗vi⊗vi+2 . . .⊗vn : 1 ≤ i ≤ n−1, v1, . . . , vn ∈ V 〉.

(ii) Conclude that Im(A) '
∧n(V ) as K-vector spaces.

Problem 5. Prove the following isomorphisms of K-vector spaces for all n ∈ Z≥0:

Sn(V ⊕W ) '
n⊕
i=0

Si(V )⊗ Sn−i(W ) and
∧n

(V ⊕W ) '
n⊕
i=0

∧i
(V )⊗

∧n−i
(W ).

Problem 6. Let v1, . . . , vk ∈ V be a collection of linearly independent vectors. Let
ω ∈

∧p(V ). Show that ω can be written as ω =
∑r

i=1 vi ∧ ψi for some ψ1, . . . ψr ∈
∧p−1(V )

if, and only if, v1 ∧ . . . vr ∧ ω = 0 ∈
∧p+r(V ).

Problem 7. Show that the multiplication maps Sk(V ) × S`(V ) → Sk+l(V ) and
∧k(V ) ×∧`(V ) →

∧k+`(V ) defined in Lecture 36 are well-defined and are obtained from the mul-
tiplication map φ : T k(V ) × T `(V ) → T k+`(V ) composed with the corresponding natural
projections to the symmetric and exterior powers of V .
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Problem 8. Assume char(K) = 0 and consider the map ϕ : Sk(V ) × S`(V ) → Sk+`(V )
defined on the indecomposable tensors via

ϕ(ξ, η) =
1(
k+`
k

)∑
σ∈G

σ(ξ ⊗ η) for G = Sk+`/(Sk × S`), ξ ∈ Sk(V ), η ∈ S`(V ),

where we view Sk × S` ⊂ Sk+` as permutations of {1, . . . , k} and {k + 1, . . . , k + `}.
(i) Check that ϕ is bilinear, so it yields a unique linear map ϕ : Sk(V )⊗S`(V )→ Sk+`(V ).

(ii) Show that ϕ defines an associative multiplication map on S•(V ).

(iii) Show that ϕ fits into the natural commutative diagram involving the multiplication
map on T •(V ), the projection T n(V ) → Sn(V ) and the inclusion Sn(V ) ↪→ T n(V )
defined in Problem 3:

Sk(V )⊗ S`(V )
� _

��

� _

��

ϕ // Sk+`(V )

T k(V )⊗ T `(V )
mult. // T k+`(V )

OO

Problem 9. Prove that V ⊗ V ' S2(V )⊕
∧2(V ) by writing the explicit isomorphisms.

Problem 10. Assume V is finite-dimensional. Pick a basis B = {v1, . . . , vn} for V .

(i) Show that ψB :
∧n(V )→ K given by ψB(α(v1 ∧ . . . ∧ vn)) = α is an isomorphism.

(ii) If B′ is another basis for V , and A is the change of bases matrix from B′ to B, show
that ψB(ξ) = det(A)ψB′(ξ) for all ξ ∈

∧n(V ).

Problem 11. Assume char(K) = 0. Consider a K-linear map f : V → W and the associated
maps Sn(f) : Sn(V )→ Sn(V ) and

∧n(f) :
∧n(V )→

∧n(V ).

(i) Show that these constructions are compatible with compositions, i.e. if f : V → U , and
g : U → W are K-linear, then

Sn(g ◦ f) = Sn(g) ◦ Sn(f) and
∧n

(g ◦ f) =
∧n

(g) ◦
∧n

(f).

(ii) Let n = dim(V ) and pick f ∈ EndK(V ). Show that the following diagram commutes∧n(V )

'
��

∧n(f)
//
∧n(V )

'
��

K
det(f)

// K

.

Here, the bottom map is multiplication by det(f) ∈ K, and the vertical maps are any
fixed isomorphism from Problem 10.

(iii) In particular, if V = U = W have dimension n and f and g correspond to two matrices
A,B ∈ Matn×n(K), show that det(AB) = det(A) det(B).



ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 12 3

Problem 12. Assume char(K) = 0. Prove the row expansion formula for determinants of
square matrices using det(f) =

∧n(f) :
∧n(Kn) →

∧n(Kn) where f : Kn → Kn is multipli-
cation by the corresponding matrix.

Problem 13. (Determinants vs. Permanents of singular matrices)
Assume char(K) = 0 and consider the endomorphism f : K2 → K2 defined by multiplica-

tion by the matrix A =

(
1 2
2 4

)
.

(i) Compute
∧2(f) :

∧2(K2)→
∧2(K2).

(ii) Compute S2(f) : S2(K2)→ S2(K2).

(iii) Compute S3(f) : S3(K2)→ S3(K2).

Problem 14. Let X ∈ GLn(K). We say X admits a Gaussian decomposition if it can be
written as a product

X = X−X0X+,

where X0 is a diagonal matrix, X+ is an upper triangular matrix (i.e. X+
ij = 0 for i > j)

with ones along the diagonal, and X− is an lower triangular matrix (i.e. X−ij = 0 for i < j)
with ones along the diagonal.

(i) Show that if X admits a Gaussian decomposition then it is unique. (Hint: Prove the
uniqueness for diagonal matrices admitting a Gaussian decomposition.)

(ii) Show that a matrix X =

(
a b
c d

)
∈ GL2(K) admits a Gaussian decomposition if, and

only if, a 6= 0. Compute explicit formulas for X−, X0 and X+.

Bonus Problem: Consider X ∈ GLn(K). The goal of this exercise is to show that X
admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.

(i) Show that if X admits a Gaussian decomposition, then all principal minors ∆1,...,i
1,...,i (for

i = 1, . . . , n) are non-zero.

(ii) If X admits a Gaussian decomposition, show that X0
11 = X11 and X0

ii = ∆1,...,i
1,...,i/∆

1,...,i−1
1,...,i−1

for all i = 2, . . . , n.

(iii) Furthermore, prove thatX−ji = ∆1,...,i−1,j
1,...,i /∆1,...,i

1,...,i andX+
ij = ∆1,...,i

1,...,i−1,j/∆
1,...,i
1,...,i for all i ≤ j.

(iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal
minors are non-zero.


