ALGEBRA I (MATH 6111 AUTUMN 2020) - HOMEWORK 12

In all problems below, we assume \mathbb{K} is a field, and U, V and W are \mathbb{K} -vector spaces. Notation: $T^n(V) = V^{\otimes n}$ is the *n*-fold tensor power of V; $S^n(V)$ and $\bigwedge^n(V)$ denote the symmetric and exterior *n*-fold power of V.

Problem 1. Let $k \in \mathbb{Z}_{\geq 1}$ and $v_1, \ldots, v_k \in V$. Show that $v_1 \wedge \ldots \wedge v_k \in \bigwedge^k V$ is non-zero if, and only if, $\{v_1, \ldots, v_k\}$ is linearly independent.

Problem 2. Let $P \in \operatorname{End}_{\mathbb{K}}(V)$ satisfying $P^2 = P$ (i.e. P is a projection). Show that $V \simeq \ker(P) \oplus \operatorname{Im}(P)$.

Problem 3. $(S^n(V) \text{ as a subspace of } T^n(V))$

Assume char(\mathbb{K}) = 0 and consider $S: T^n(V) \to T^n(V)$ given by $S(\xi) = \frac{1}{n!} \sum_{\sigma \in \mathbb{S}_n} \sigma(\xi)$.

(i) Show that $S^2 = S$ and, furthermore,

 $\ker(S) = \langle v_1 \otimes \ldots \otimes v_n - v_1 \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_i \otimes v_{i+2} \ldots \otimes v_n : 1 \le i \le n-1, v_1, \ldots, v_n \in V \rangle.$ (ii) Conclude that $\operatorname{Im}(S) \simeq S^n(V)$ as K-vector spaces.

Problem 4. ($\bigwedge^{n}(V)$ as a subspace of $T^{n}(V)$) Assume char(\mathbb{K}) = 0 and consider $A: T^{n}(V) \to T^{n}(V)$ given by $A(\xi) = \frac{1}{n!} \sum_{\sigma \in \mathbb{S}_{n}} \operatorname{sign}(\sigma) \sigma(\xi)$.

(i) Show that $A^2 = A$ and furthermore,

 $\ker(A) = \langle v_1 \otimes \ldots \otimes v_n + v_1 \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_i \otimes v_{i+2} \ldots \otimes v_n : 1 \le i \le n-1, v_1, \ldots, v_n \in V \rangle.$ (ii) Conclude that $\operatorname{Im}(A) \simeq \bigwedge^n(V)$ as K-vector spaces.

Problem 5. Prove the following isomorphisms of \mathbb{K} -vector spaces for all $n \in \mathbb{Z}_{\geq 0}$:

$$S^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} S^{i}(V) \otimes S^{n-i}(W) \text{ and } \bigwedge^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} \bigwedge^{i}(V) \otimes \bigwedge^{n-i}(W).$$

Problem 6. Let $v_1, \ldots, v_k \in V$ be a collection of linearly independent vectors. Let $\omega \in \bigwedge^p(V)$. Show that ω can be written as $\omega = \sum_{i=1}^r v_i \wedge \psi_i$ for some $\psi_1, \ldots, \psi_r \in \bigwedge^{p-1}(V)$ if, and only if, $v_1 \wedge \ldots v_r \wedge \omega = 0 \in \bigwedge^{p+r}(V)$.

Problem 7. Show that the multiplication maps $S^k(V) \times S^{\ell}(V) \to S^{k+\ell}(V)$ and $\bigwedge^k(V) \times \bigwedge^{\ell}(V) \to \bigwedge^{k+\ell}(V)$ defined in Lecture 36 are well-defined and are obtained from the multiplication map $\phi: T^k(V) \times T^{\ell}(V) \to T^{k+\ell}(V)$ composed with the corresponding natural projections to the symmetric and exterior powers of V.

Problem 8. Assume char(\mathbb{K}) = 0 and consider the map $\varphi \colon S^k(V) \times S^\ell(V) \to S^{k+\ell}(V)$ defined on the indecomposable tensors via

$$\varphi(\xi,\eta) = \frac{1}{\binom{k+\ell}{k}} \sum_{\sigma \in G} \sigma(\xi \otimes \eta) \quad \text{for } G = \mathbb{S}_{k+\ell} / (\mathbb{S}_k \times \mathbb{S}_\ell), \xi \in S^k(V), \eta \in S^\ell(V),$$

where we view $\mathbb{S}_k \times \mathbb{S}_\ell \subset \mathbb{S}_{k+\ell}$ as permutations of $\{1, \ldots, k\}$ and $\{k+1, \ldots, k+\ell\}$.

- (i) Check that φ is bilinear, so it yields a unique linear map $\overline{\varphi} \colon S^k(V) \otimes S^\ell(V) \to S^{k+\ell}(V)$.
- (ii) Show that $\overline{\varphi}$ defines an associative multiplication map on $S^{\bullet}(V)$.
- (iii) Show that $\overline{\varphi}$ fits into the natural commutative diagram involving the multiplication map on $T^{\bullet}(V)$, the projection $T^{n}(V) \to S^{n}(V)$ and the inclusion $S^{n}(V) \hookrightarrow T^{n}(V)$ defined in Problem 3:

Problem 9. Prove that $V \otimes V \simeq S^2(V) \oplus \bigwedge^2(V)$ by writing the explicit isomorphisms.

Problem 10. Assume V is finite-dimensional. Pick a basis $B = \{v_1, \ldots, v_n\}$ for V.

- (i) Show that $\psi_B \colon \bigwedge^n(V) \to \mathbb{K}$ given by $\psi_B(\alpha(v_1 \land \ldots \land v_n)) = \alpha$ is an isomorphism.
- (ii) If B' is another basis for V, and A is the change of bases matrix from B' to B, show that $\psi_B(\xi) = \det(A)\psi_{B'}(\xi)$ for all $\xi \in \bigwedge^n(V)$.

Problem 11. Assume char(\mathbb{K}) = 0. Consider a \mathbb{K} -linear map $f: V \to W$ and the associated maps $S^n(f): S^n(V) \to S^n(V)$ and $\bigwedge^n(f): \bigwedge^n(V) \to \bigwedge^n(V)$.

(i) Show that these constructions are compatible with compositions, i.e. if $f: V \to U$, and $g: U \to W$ are K-linear, then

$$S^{n}(g \circ f) = S^{n}(g) \circ S^{n}(f)$$
 and $\bigwedge^{n}(g \circ f) = \bigwedge^{n}(g) \circ \bigwedge^{n}(f)$

(ii) Let $n = \dim(V)$ and pick $f \in \operatorname{End}_{\mathbb{K}}(V)$. Show that the following diagram commutes

Here, the bottom map is multiplication by $det(f) \in \mathbb{K}$, and the vertical maps are any fixed isomorphism from Problem 10.

(iii) In particular, if V = U = W have dimension n and f and g correspond to two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, show that $\det(AB) = \det(A) \det(B)$.

Problem 12. Assume char(\mathbb{K}) = 0. Prove the row expansion formula for determinants of square matrices using det(f) = $\bigwedge^{n}(f)$: $\bigwedge^{n}(\mathbb{K}^{n}) \to \bigwedge^{n}(\mathbb{K}^{n})$ where $f : \mathbb{K}^{n} \to \mathbb{K}^{n}$ is multiplication by the corresponding matrix.

Problem 13. (Determinants vs. Permanents of singular matrices)

Assume char(\mathbb{K}) = 0 and consider the endomorphism $f: \mathbb{K}^2 \to \mathbb{K}^2$ defined by multiplication by the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

- (i) Compute $\bigwedge^2(f) \colon \bigwedge^2(\mathbb{K}^2) \to \bigwedge^2(\mathbb{K}^2)$.
- (ii) Compute $S^2(f): S^2(\mathbb{K}^2) \to S^2(\mathbb{K}^2)$.
- (iii) Compute $S^3(f) \colon S^3(\mathbb{K}^2) \to S^3(\mathbb{K}^2)$.

Problem 14. Let $X \in GL_n(\mathbb{K})$. We say X admits a *Gaussian decomposition* if it can be written as a product

$$X = X^- X^0 X^+,$$

where X^0 is a diagonal matrix, X^+ is an upper triangular matrix (i.e. $X_{ij}^+ = 0$ for i > j) with ones along the diagonal, and X^- is an lower triangular matrix (i.e. $X_{ij}^- = 0$ for i < j) with ones along the diagonal.

- (i) Show that if X admits a Gaussian decomposition then it is unique. (*Hint:* Prove the uniqueness for diagonal matrices admitting a Gaussian decomposition.)
- (ii) Show that a matrix $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{K})$ admits a Gaussian decomposition if, and only if, $a \neq 0$. Compute explicit formulas for X^-, X^0 and X^+ .

Bonus Problem: Consider $X \in GL_n(\mathbb{K})$. The goal of this exercise is to show that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.

- (i) Show that if X admits a Gaussian decomposition, then all principal minors $\Delta_{1,\ldots,i}^{1,\ldots,i}$ (for $i = 1, \ldots, n$) are non-zero.
- (ii) If X admits a Gaussian decomposition, show that $X_{11}^0 = X_{11}$ and $X_{ii}^0 = \Delta_{1,\dots,i}^{1,\dots,i-1} / \Delta_{1,\dots,i-1}^{1,\dots,i-1}$ for all $i = 2, \dots, n$.
- (iii) Furthermore, prove that $X_{ji}^- = \Delta_{1,\dots,i}^{1,\dots,i-1,j} / \Delta_{1,\dots,i}^{1,\dots,i}$ and $X_{ij}^+ = \Delta_{1,\dots,i-1,j}^{1,\dots,i} / \Delta_{1,\dots,i}^{1,\dots,i}$ for all $i \leq j$.
- (iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.