Lecture 6: Group Active on Sets II
Recall G a yous, X ass, we define a left action of G in X as a map
$G \times X \longrightarrow X \quad$ satisfying
(i) $e \cdot x=x \quad \forall x \in X$
(ii) $\left(g_{1}, g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right) \begin{aligned} & \forall g_{1}, g_{2} \in G \\ & \forall x \in x\end{aligned}$

Equivalently: $G \longrightarrow$ Att (X) is a gorey hamonurfturn

$$
\begin{aligned}
& G \longrightarrow \operatorname{Att}(X) \quad \text { is a gory humanurfirim } \\
& g \longmapsto(x \longmapsto g \cdot x) \quad \text { Write } G C X
\end{aligned}
$$

Key subsets : orbits, stabilizers a fixed pt set.

- On bit of $x \in X:$ is $G \cdot x=3 g \cdot x: g \in G\} \subseteq x$
- Stabilizer of $x \in X$ is $\overline{\text { Stab }_{G} x}=\{g \in G \mid g \cdot x=x\}<G$ (subgroup, but generally not normal)
- Fix print set fr $g \in G$ is $X^{g}=\{x \in X \mid g \cdot x=x\} \subseteq X$
- Equiralente Relation on X :

$$
\begin{aligned}
x \approx y & \Longleftrightarrow \exists g \in G: g \cdot x=y \\
& \Leftrightarrow x \text { sc in same } G \text {-rit }
\end{aligned}
$$

$\leadsto G^{X}:=X / \sim_{G}$ partition of X into Equivalence Classes

- Write this partition as $X=\underset{\alpha \in G^{X}}{\bigsqcup^{X}} G \cdot X_{\alpha} \Rightarrow|X|=\sum_{\alpha \in G}\left|G \cdot x_{\alpha}\right|$
(Here $x_{\alpha} \in X$ is a choice of an element fun e the G-rit labeled by $\alpha \in \underset{G}{X}$)
\$1 Counting Lemmas.
Om first objective is to count the orbits of GCX

$$
\underset{(\text { Plop })}{\text { Recall: }} G / \operatorname{Stab}_{G}(x) \xrightarrow{\text { bij }} G \cdot x \& \operatorname{Stab}_{G}(x) \xrightarrow{\operatorname{caj}_{\sigma}} \operatorname{Stab}_{G}(\sigma \cdot x)
$$

Coollary: (a) $|G|=|G \cdot x| \quad \mid$ Stab $_{G} x \mid \quad \forall x \in X$
(b) $|X|=\sum_{\alpha \in G^{x}}|G| /\left|\operatorname{Stab}_{G}\left(x_{\alpha}\right)\right|$

Example: $S_{n} \mathrm{C}\{1, \ldots n\} \quad$ Only 1 rbit $=X$.
$\left.S_{S_{a b}}(n) \simeq S_{n-1} \hookrightarrow S_{n} \Rightarrow n=|X|=\frac{|G|}{\mid S_{\text {tab }}^{G}}(n) \right\rvert\,=\frac{u!}{(n-1)!D}$
On linst moin result is the following.
Buanside 'Lemma $($ Frabenius, 1887) \# of orbits $=$ areage \# of fixed pts Mre precisely: $\left|G^{X}\right|=\frac{1}{|G|} \sum_{j \in G}\left|X^{g}\right|$
Puof: Write $F:=\{(g, x) \in G \times X \mid g \cdot x=x\} \underset{G M 1,}{\subseteq} G \times X$
Claim1: $\quad|F|=\sum_{j \in G}\left|x^{g}\right|$
(imcidence wrenp.)
PFf Sum ore $1^{\text {st }}$ Cmprent $\left(F_{i x g:}:(g, x) \in \bar{F} \Leftrightarrow x \in X^{g}\right)$
Clain 2: $|F|=\sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right|$
3F/Sum ore $2^{\text {nd }}$ comprinent (Fixx: $\left.(\rho, x) \in \mp \Leftrightarrow g \in \operatorname{Stab}_{G}(x)\right)$ Combining the two claims:

$$
x=\operatorname{Lick}_{\alpha \in \mathbb{K}} G \cdot x_{\alpha}
$$

$$
\begin{aligned}
&|F|=\sum_{\beta \in G}\left|x^{\gamma}\right|=\sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right| \stackrel{\downarrow}{=} \sum_{\alpha \in G} \sum_{y \in \alpha} \underbrace{\mid \operatorname{stab} G}_{=|G|}(y) \mid \\
&= \sum_{\alpha \in G_{G}^{x}} \underbrace{\left|\operatorname{Stab}_{G}\left(x_{\alpha}\right)\right|} \\
&\left(y=\sigma \cdot x_{\alpha}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{S}_{n} \cup\{1,2, \ldots n\}=X \quad\left|X^{\sigma}\right|=\# 1 \text { cycles in } \sigma \\
& \underset{\sigma}{ } \quad\left(\text { Eg } n=5: X^{(123)(4)(5)}=\{4,5\}\right)
\end{aligned}
$$

Induces $H=\langle\sigma\rangle \varrho X$
$X=$ disjoint univ of refits under $\langle\sigma\rangle=H$
We find them by writing σ as a product of disjoint cycles.

$$
\begin{aligned}
& \sigma=\left(i_{1} \cdots i_{k_{1}}\right)\left(i_{k_{+1}} \cdots i_{k_{2}}\right) \cdots\left(i_{k_{s}+1}, \ldots i_{n}\right) \\
& \left.\quad \text { Then } H)^{X}=\left(\left\{i_{1} \ldots i_{k_{1}}\right\} ; i_{k_{1}+1}, \ldots i_{k_{2}}\right\}, \ldots\left\{i_{k_{s}+1}, \ldots, i_{n}\right\}\right)
\end{aligned}
$$

Eg: $\left.n=5 \quad \sigma=(123)(4)(5) \Rightarrow\langle\sigma\rangle X^{X}=\{\{1,2,34,34\}, 35\}\right\}$

$$
\begin{aligned}
& \operatorname{Stab}_{\langle\sigma\rangle}(1)=\operatorname{Stab}(\alpha)_{\langle\sigma\rangle}=\operatorname{Stab}_{\langle\sigma\rangle}(3)=\{e\},{\operatorname{Stab},<\rangle_{>}}(4)=\operatorname{Stab}_{\langle\sigma\rangle}(5)=\langle\sigma\rangle \\
& x_{2}=1,4,5 \\
& |X|=\sum_{\left.\alpha \in H^{\prime}\right|^{\prime}} \stackrel{\mid H y}{\left|\operatorname{Stab}_{H}\left(x_{\alpha}\right)\right|} \stackrel{\downarrow}{=} \frac{3}{1}+\frac{3}{3}+\frac{3}{3}=3+1+1=5
\end{aligned}
$$

Next: $\left|\frac{X}{H^{\prime}}\right|=$ \# cycles in σ (including 1 -cycles)

$$
\left|X_{i=1, \ldots, O(\sigma)-1}^{\sigma^{i}}\right|=\# 1 \text {-cycles in } \sigma^{i}=\sum_{j \mid i} \#(\text { cycles of length } j) \cdot j
$$

Burnside: \# cycles in $\sigma=\left|\begin{array}{|c|}\langle\sigma\rangle \\ \langle(\sigma)-1\end{array}\right|=\frac{1}{|\sigma|} \sum_{\rho \in\langle\sigma\rangle}\left|X^{g}\right|$ $=\frac{1}{\operatorname{lcm}(\text { code length in } \sigma)}\left(n+\sum_{i=1}^{0(\sigma)-1} \sum_{j \mid i} j\right.$. \# cycles of length $\left.j\right)$
Eg $n=5 \quad \sigma=(123)(4)(5) \quad 0(\sigma)=3=\operatorname{lcm}(3,1,1)$

$$
3 \stackrel{?}{=} \frac{1}{3}\left(5+(1 \cdot 2)+\left(\begin{array}{l}
(1 \cdot 2 \\
i=2 \\
i=1 \\
j=1
\end{array}+\begin{array}{l}
i=2 \\
j=1
\end{array}\right)\right)=\frac{9}{3}=3
$$

\$2 Applications
(1) Pict n \& anfcomprition of $n=\left(a_{1}, \ldots, a_{r}\right) \quad a_{1}+\cdots+a_{r}=n \quad a_{i} \in \mathbb{Z}_{>0}$ $\Rightarrow X=$ set 1 all partitions $P_{1} L \cdot-\nu P_{r}$ of $\left.\mid 11, \cdots n\right\}$ with $\left|P_{i}\right|=a_{i}$. Eg $n=7=3+2+2 \quad\left|P_{1}\right|=3, \quad\left|P_{2}\right|=2, \quad\left|P_{3}\right|=2$
Then $S_{n} \subseteq X$ \& this action is Tonsiture (one orbit!) $\operatorname{Stab}_{S_{n}}(x) \cong S_{a_{1}} \times S_{a_{2}} \times \cdots \times S_{a_{r}}$ (with cord wise mulaificatiu) Eg: Stabs $f=31,2,3\} \sim 3,5,5 \cup 36,7\}) \simeq S_{3} \times S_{2} \times S_{2}$

$$
\left.\Rightarrow|X|=\frac{\left|S_{7}\right|}{\mid S_{t a b} S_{n}}(x) \right\rvert\,=\frac{7!}{3!2!2!}
$$

In general, we get the formula in the multinmial coff!

(2) Let $p>0$ be a prime number

Def: A pout G is said to be a $P=$ roup if $G=p^{k}$ forme $k \in \mathbb{Z} \geqslant 1$.
$E_{g}: G=\mathbb{Z} / p^{k} \mathbb{Z}$ is a p-group.
Lemma : Let G be a r-poop acting n a finite ret X. Then $|X| \equiv\left|X^{G}\right| \quad$ nod p.
Here: $X^{G}=\bigcap_{g \in G} X^{g}=\{x \in X: g \cdot x=x \quad \forall g \in G\}$
Proof: By ($*$) m page, $|X|=\sum_{\alpha \in G}\left|G \cdot x_{\alpha}\right|=\left|X^{G}\right|+\sum_{\alpha \in G^{*}}\left|G \cdot x_{\alpha}\right|$ $\Rightarrow|x| \equiv\left|x^{G}\right| \bmod (p)$. Since $\left|<\left|G \cdot x_{\alpha}\right| \quad\right||G|=p^{k}$
(3) Prop: given any prime $p \in \mathbb{Z}_{\geqslant 2}$ \& $m \in \mathbb{Z}_{\geqslant 1}$, we have $\binom{p_{m}^{r}}{p} \equiv m($ mod $p)$

Proof: (1) Induct on r
(2) Use group actins! Take $G=\mathbb{Z} / p^{r} \mathbb{Z}, \begin{aligned} & X=\left\{x_{1}, \ldots, x_{m}\right\} \\ & \text { any set withmelements }\end{aligned}$

- $E=$ sit of all p^{r} element subsets of $G \times X$.m $|E|=\binom{p_{m}^{r}}{p^{r}}$
- $G \varrho G \times X$ by $\sigma(g, x)=(\sigma \cdot g, x)$

So $G C E$ by $\sigma\left\{e_{1}, \ldots, e_{p r}\right\}=\left\{\sigma\left(e_{1}\right), \sigma\left(e_{2}\right), \ldots, \sigma\left(e_{p r}\right)\right\}$ (aximus of left actin are satisfied)

- By lemma: $|E| \equiv \#$ (of rbits with exactly see element) (nod p)

Let's count how many such rbits we hare: $2^{\text {nd }}$ minty of each member of the rit is fixed!
\Rightarrow Orbits are $\left.\left.\left\{\left(g, x_{1}\right): g \in G\right\},\left\{\left(g, x_{2}\right): g \in G\right\}, \ldots\right\}\left(g, x_{m}\right): g \in G\right\}$ $\Rightarrow m$ of them!
We get $\binom{p_{m}^{r}}{m}=|E| \equiv m \quad \bmod (p)$
Obs: This will be used in one of the Sylow Thurems.
S3Activs of $G m$ itself
(1) Left Multiflicatim: L : where $L_{g}(x)=g x \quad \forall x$
(2) Right Multiplication

Where $R_{g}(x)=x \cdot g^{-1} \quad \forall x$

$$
\begin{aligned}
& G \longrightarrow \operatorname{Aut}_{\mathrm{set}}(G) \\
& g \longmapsto L_{g} \longmapsto
\end{aligned}
$$

Similar situation:

$$
\begin{aligned}
& G \circlearrowright X \leadsto G \subset F_{\text {min }}(X, Y) \text { in }(g \cdot f)(x) F^{F^{\prime}\left(g^{-1} \cdot x\right)} \\
& Y \text { set } \stackrel{u}{F} \\
& \left(g_{1} \cdot\left(g_{2} \cdot f\right)\right)(x)=\left(g_{2} \cdot f\right)\left(g_{1}^{-1} x\right)=f\left(g_{2}^{-1} g_{1}^{-1} x\right)=f\left(\left(g_{1}, g_{2}\right)^{-1} x\right) \\
& (e \cdot f)(x)=f(x), \\
& =\left(g_{1} g_{2} \cdot F\right)(x)
\end{aligned}
$$

(3) Conjugation (HWI)
$C: G \longrightarrow$ Ant $_{\text {set }}(G)$
where $C_{g}(x)=g \times g^{-1} \quad \forall x$.
34. More afllication:

Consider $G C G$ by anjugation
For $x \in G$, the stabilizer $=\left\{g \in G \mid \rho \times g^{-1}=x\right\}$ is also called the centralizer of x. We denote it by $Z_{G}(x)$.

- G-rbits under conjugation an called conjugacy classes Write the set of all these classes by \mathcal{E}.
Obs: For each $g \in G$, the set of elements of G fixed under C_{g} is $Z_{G}(g)$
(Indeed: $h g^{-1}=g \Leftrightarrow h g=g^{h} \Leftrightarrow g^{-1} h g=h \Leftrightarrow g h g^{-1}=h$)
By our counting lemmas:

$$
\text { - } \begin{aligned}
&|G|=\sum_{\alpha \in \zeta}\left|G \cdot x_{\alpha}\right|=\sum_{\alpha \in \zeta}\left|\frac{G}{Z_{G}\left(x_{\alpha}\right)}\right|=\sum_{\alpha \in \zeta}\left[G: Z_{G}\left(x_{\alpha}\right] .\right. \\
& \cdot \underbrace{|\zeta|}=\frac{1}{|G|} \sum_{\alpha \in \zeta}\left|G^{x_{\alpha}}\right|_{\bar{\gamma}}=\underbrace{\frac{1}{|G|} \sum_{\alpha \in \zeta}\left|Z_{G}\left(x_{\alpha}\right)\right|}
\end{aligned}
$$

\# cay. classes
by Obs average \# of elements in a cutalezegr

