Last time : Discussed Sylow Thus Fix p>0 prime & write n=pm with (m:p)=1. Let G be a group of order n. Definition: A subgroup P<G of order p'is called a Sylow p-subgroff Sylow Theorems: (A) Sylow p- subgroups exist. (BI) If H<G is a p-group, then there exists a Sylow p-subgroup P<G with H CP. (B2) Any two Sylow p-subgroups P, Q<G are cnjugate to each other (ie] ge G with Q = g Pg-') (c) Let np = number of Sylow 1-subgroups of G. Then (i) np = 1 mod(p) m)np m Obst: (A) can be strengthen to arbitrary powers of p: (see HW3) (A') There exists subgroups H of G with IHI = p2 frall i=0; , r. Obsz: original proof of Sylow (A) went through permutations & matrices / Hp: (see HW3) Autset (G) <u>Step1</u>: $G \longrightarrow S_n \longrightarrow GL_n(\mathbb{F}_p)$ Step 2: GL, (IFp) has a sylew p- group = { (', is) , is the reiciden } Hore, $|GL_n(\mathbb{H}_n)| = p^{\frac{n(n-1)}{2}} \Pi$ where $(p:\mathbb{N}) = 1$ (Last time : n=2 & p=5). -> Step 3 (HEART) IF G < H IIIGI & H has a Sylow p-subop, so does G. Ubs 3: Can count np for GL, (IFq) for any finite hild If of charp (q=pt) (see HWS) $n_p = \prod_{k=1}^{n} (q^{k-1} + q^{k-2} + \dots + 1) =: [n!]_q (q - |actorial number!)$ (Last Time n=2 & q=p=5, we got $N_5 = 6 = 1(5+1) = [2!]_5$)

\$1. Application 1: Class bying Simple groups Sylow Theorems are often used for classification of finite groups In particular, they can help us find one nontrivial, projer normal subgp. (If so, e # H < G ~ maller roler) Definition: A group G is simple if it has no nontrivial projer, normal subgroup. Lemma: Assume G has a unique Sylow p-subgroup P, PIG & Gis not a p-gp. Then, POG Sina y=1, we conclude g Pg⁻¹ = P HgEG, so PSG. Broportion 1: There are no simple groups of order 28 $\frac{3F}{|G|} = 28 = 2^{2}7 \quad m_{7} = 1 \quad m$ proper a unitrimial. So G is not simple. "Proposition 2: There are no simple groups of rdur 224. Then by the Lemma Sylow 2-subgroup PAG CASGI: nz=1 so G is not simple ! But e ≠ P, P ≠ G CASE2: $n_2=7$ ss . | Sylz(G)|=7. By Thm (82) G C Sylz(G) by injugation.

Thus, we have a youp humanistriphism:

$$P: G \longrightarrow Aut_{st} Syl_2(G) = S_7$$

sign: 224 71 ± 5040
(Laim1: P is not injection
 $F/$ If so $G \simeq Im P < S_7$ so $224|5040$ (atel
(Laim2: P is not timed
 $SF/$ Ker $P = G$ means $G \subset Syl_2(G)$ is a trained action,
but in know it's transitive & $1Syl_2 G| \neq 1$. (atel)
(Induction Ker(P) $\Rightarrow G$, Ker(P) $\neq P, G$, so G is not simple.
The last annual track is to present other some $n_P > 1$.
Proposition 3: There are no bimple groups of relars 6.
 $SI/$ $IGI = 56 = 2^{3.7}$. $\implies n_7 \equiv 1 \mod 7$
 $Tim(C) = n_7 \mid 8$
 $: CASE I: n_7 \equiv 1$ Then G is not simple ($P \in Syl_7(G)$ words))
 $: CASE 2: n_7 \equiv 8$ Write $Syl_7(G) = \frac{3}{P_1}, \dots, P_8$.
 $: Each Pic has 7 elements.
 $: Pi(n_7) = 3e4$ if $i \neq j$ (any $x \in P_1 \cap P_j$, $x \neq e$ will yourset
 $\implies \bigcup_{i \neq j} P_i$ has $(7-i) \otimes = 4 \otimes$ elements of relar 7.
Then, $H = (G \setminus \bigcup_{i \neq j} P_i) \cup 3e4$ has $5e - 48 \equiv 8$ elements.
 $: Uaxim : H$ is a Sylow 2-subpoort of G , so $n_2 = 1 \approx G$ is not simple
 $Iq \in Syl_2(G)$, then $Q \cap P_i = 3e4$ (relars an optime)
 $SO \ Q \subseteq H$ but $1QI = 1HI = 8$ so $Q = H$ II
 $Obs: On example featuring all tracks (in HW3):$
 $If G| = 60 = 2^{1}, S = 6$ is simple, from $n_7 = 6$ n_3 = 10 a $n_2 = 5$.$

§ 2 Classification of groups of order p²:
Lemma: If H ≠ set is a p-group, then its unter Z(H) is matrixed
3F/ Consider H C H by conjugation, then
$$|H^{H}| \equiv |H| \equiv 0$$
 (mod p)
 $H^{H} = 3 \times CH$: $h \times h^{-1} = X$ th C H $\frac{1}{2} = Z(H) = P[Z(H)] \square$
Obs: Z(H) < H is a normal abelian subgroup.

We can prove that groups of reder p^2 are abelian e we can closerly them: Proposition: If $[G]=p^2$, then G is a belian. Furthermore,

SF/ By our Lemma
$$[Z_{(G)}] = p$$
 or p^2 In the latter case, $G = Z(G)$
 $e G$ is abelian. In the former case $[G_{Z(G)}] = p$ so $G_{Z(G)} \cong \mathbb{Z}_{pZ}$
is cyclic. But HWI Problem 18 implies G is a belian so $[Z(G)] \neq P$.
To finish, we show the classification of G (interpreted to the classification of G (interpreted to the classification of $G = Z(G) \cong \mathbb{Z}_{pZ}^{2}$.

CASEZ: Every un-identity element has order p. We claim

$$G \stackrel{\checkmark}{=} \stackrel{\sim}{=} \stackrel{$$

Conclude:
$$G \stackrel{(m)}{=} < \sigma > x < \delta > m = \frac{1}{102} \times \frac{1}{102} \times \frac{1}{102}$$

 $T^{k}\delta^{2} = -1 (T^{k}, z^{e})$
His is gp homosphism a surjective by ()
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
Obs. 1: Proprotion fails for $|G| = p^{3}$ (eg $G = Q_{g}$ or D_{g})
(1) We only need $< \sigma > a < \delta >$ To mutually commute.
(2) We only need $< \sigma > a < \delta >$ To mutually commute.
(3) We out only need them to be normal
Then two orditions will had to semidiate products (ment time!)
\$3 Application: (lassify groups of rdurgs
Fix G a finite youp with $|G| = 95 = s^{2}$.
Then $n_{s} = \# i P \leq G$: $|Q| = 5i \quad n_{s} = 1(s) , n_{s} |S \Rightarrow n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1(s) , n_{s} |S \Rightarrow n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1(s) , n_{s} |S \Rightarrow n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1(s) , n_{s} |S \Rightarrow n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1(s) , n_{s} |S \Rightarrow n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1 \quad n_{s} = 1 \quad n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1 \quad n_{s} = 1 \quad n_{s} = 1$
 $n_{s} = \# i Q \leq G : |Q| = 5i \quad n_{s} = 1 \quad n_{s} = 1 \quad n_{s} = 1$
 $n_{s} = \# i Q \leq G : Hen \quad g = |P| \mid |H| \Rightarrow |H| = 5i \quad H| = 5i \quad n_{s} = 1$
 $i \quad Q \quad f \quad sig \quad S \quad Q < Q \quad g = 0$
 $ord i \quad n_{s} \mid Q = P \cap Q = 3ei \quad n_{s} = 1 \quad n$

<u>Conclusion</u> $G = \int pq : p \in P, q \in Q \}$ with group operation $1q \cdot p'q' = \prod' qq'$ (qp' = p'q) be cause 1, q are mutually $ep \in Q$ Note: $P \times Q \longrightarrow G$ is group homomorphism $(P, q) \longmapsto Pq$ Pq $1P \times Q1 = 1G1$ so iso! By Proportion $P \simeq Z_{qq}$ $\pi Z_{qq} \times Z_{qq} \otimes Q \simeq Z_{5q}$, so we understand G completely: $G \simeq P \times Q$.