Lecture 8: Sylow Theorems II
Last time: Discussed Sylow Thus
Fix $p>0$ prime \& wite $n=p^{r} m$ with $(m: p)=1$.
Let G be a group of rider n.
Di4nition: A subpoup $P<G$ of rider P^{r} is called a Sylow p-subspof G
Sylow Theorems: (A) Sylow p-subgroups exist.
(B1) If $H<G$ is a p-pout, then there exists a Sylow p-subpoup $P \angle G$ with $H \subseteq P$.
(B2) Any two Sylow P-subgroups $P, Q<G$ are conjugate to each ot hen (ie $\exists g \in G$ with $Q=g P_{g}^{-1}$)
(c) Let $n_{p}=$ number of sylow 1 -subgroups of G. Then (i) $n_{p} \equiv 1$ model (p)
(ii) np / m

Obs 1: (A) can be strengthen To arbitary prows of p : (see HW 3)
(A^{\prime}) There exists mobsoups H of G with $|H|=P^{i}$ fr all $i=0, \ldots, r$.
Obs 2: original proof of Sylow(A)went thosegh permutations \& matrices / Np:
(seth)

$$
\begin{aligned}
& \text { Alt }{ }_{\text {sem }}(G) \\
& \text { Step I: } G \hookrightarrow S_{n} \longrightarrow G L_{n}\left(\mathbb{I}_{p}\right) \\
& g \longmapsto L_{g} \longmapsto\left(P_{\sigma}\right)_{i j}= \begin{cases}1 & i \\
0 & \sigma_{k i}=j \\
d & d s e\end{cases}
\end{aligned}
$$

 Here, $\left|G L_{n}\left(\mathbb{I}_{n}\right)\right|=p^{\frac{n(n-1)}{2}} \Pi$ where $(p: \Pi)=1$
(Last time : $n=2$ \& $p=5$).
\rightarrow Step 3 (HEART) If $G<H \quad|l| G \mid$ \& H has a Sylow p-subsp, so does G. Obs 3: Can count n_{p} for $G L_{n}\left(\mathbb{F}_{q}\right)$ for any finite field $T_{q} f$ char $p\left(q=p^{k}\right)$ (reetlW3) $n_{p}=\prod_{k=1}^{n}\left(q^{k-1}+q^{k-2}+\cdots+1\right)=:[n!]_{q}$ (q-factrial member!) (Last time $n=2$ \& $q=p=5$, we got $n_{5}=6=1(5+1)=[2!]_{5}$)
\$1. Application 1: Class trying Simple groups
Sylow Therms an often used for classification of finite groups In particular, they can help us find one nontrivial, proper normal subgp. (If so, e $e \neq H \triangleleft G \leadsto s / H$ is group if smaller order....)
Definition: A group G is simple if it has no nontriisial, proper, normal subgroup.
Lemma: Assume G has a unique Sylow p-subgroup $P, p \mid G$ \& G is not a p-gp. Then, $P \triangleleft G$
Proof: By Thu (B2), gP g^{-1} is ald a Sylow p-Subgroup $\forall g \in G$. Since $n_{p}=1$, we conclude $g P g^{-1}=P \quad \forall g \in G$, so $P \triangleleft G$.

Propstimil: There are no simple groups of rider 28 Pf/ $|G|=28=2^{2} 7 \quad$ Tm $\left.^{2}(\mathrm{c}) \quad \begin{array}{l}n_{7} \equiv 1 \text { mod } 7 \\ n_{7} 14\end{array}\right\} \Rightarrow \begin{aligned} n_{7}=1\end{aligned}$ By the Lemma, the Sylow 7-subgroup P of G is normal, proper a untrinial. So G is not simple.

Proposition 2: There an no simple groups of order 224.
Pf/ $\left.|G|=224=2^{5} \cdot 7 \underset{\operatorname{Thm}(c)}{\Longrightarrow} \quad \begin{array}{l}n_{2} \equiv 1 \bmod 2 \\ n_{2} \mid 7\end{array}\right\} \Rightarrow n_{2}=1 \pi 7$
CASE 1: $n_{2}=1$ Then by the Lemma Sylow 2-sabpory $P \forall G$ But $e \neq P, P \neq G$ so G is not simple!
CASE 2: $x_{2}=7$ so $\left|S_{y} l_{2}(G)\right|=7$.
By Thu (B2) $G \subseteq \operatorname{Syl}_{2}(G)$ by unjugation.

Thus, we have a goop lumourphism:

$$
\varphi: G \longrightarrow \text { Ant }_{\text {set }} S_{y P_{2}}(G)=S_{7}
$$

sizes: 224

$$
71=5040
$$

Claim 1: φ is not injectise
Pf/ If so $G \simeq \operatorname{Im} \varphi<S_{7}$ so $224 \mid 5040$ Coil
Claim 2: φ is not trivial

$$
(25 \times 5040)
$$

Sf/ $\operatorname{Ker} \varphi=G$ mans $G C S_{y} l_{2}(G)$ is a trivial actin, but we know it's transitive \& $\left|S_{y} l_{2} G\right| \neq 1$. Conte!
Conclusion $\operatorname{Ker}(\varphi) \Delta G, \quad \operatorname{ker}(\varphi) \neq e, G$, so G is not simple.
-The last usual trick is lo orecocerent when some $n_{p}>1$.
Pepopritim 3: There ane no simple groups of order 56 .
Bf/ $\left.|G|=56=2^{3} \cdot 7 . \underset{\operatorname{Thn}(c)}{\Rightarrow} \begin{array}{l}\quad n_{7} \equiv 1 \bmod 7 \\ n_{7} \mid 8\end{array}\right\} \Rightarrow n_{7}=178$

- CASE 1: $n_{7}=1$ Then G is not simple ($P \in \operatorname{Syl}_{7}(G)$ works)
- CASE 2: $n_{7}=8$ Wite $S_{y} l_{7}(G)=\left\{P_{1}, \ldots, P_{8}\right\}$.
- Each P_{i} has 7 elements.
- $P_{i} \cap P_{j}=3 e r \quad$ if $i \neq j \quad$ (any $x \in P_{i} \cap P_{j}, x \neq e$ will juurate
$\Rightarrow \bigcup_{i=1}^{8} P_{i}$ has $(7-1) 8=48$ elements of r oder 7 .
Then, $H=\left(G \backslash \bigcup_{i=1}^{8} P_{i}\right) \cup 3 e \varepsilon$ has $56-48=8$ elements.
- Claim : H is a Sylow z-subpoup of G, so $n_{2}=1$ \& G is int simple If $Q \in \operatorname{Syl}_{2}(G)$, then $\left.Q \cap P_{i}=3 e\right\}$ (roues are coppime) So $Q \subseteq H$ but $|Q|=|H|=8$ so $Q=H$
Obs: One example featuring all tricks (in HW_{3}):
If $|G|=60=2^{2} .3 .5 \& G$ is simple, thin $n_{5}=6, n_{3}=10 \& n_{2}=5$.
§. 2 Classification of groups of rider p^{2} :
Lemma: If $H \neq$ ser is a p-group, then its enter $Z(H)$ is nontrivial
Bf/ Consider HCH by anjupation, then $\left|H^{H}\right| \equiv|H| \equiv 0$ (mod p)

$$
H^{H}=\left\{x \in H: h \times h^{-1}=x \quad \forall h \in H\right\}=Z(H)|\Rightarrow p||Z(H)|
$$

Obs: $Z(H) \triangleleft H$ is a normal abelian subgroup.
We can pore that groups of order p^{2} are abelian s we condessty them:
Puppritim: If $|G|=p^{2}$, then G is a belian. Futtermire,

$$
G \simeq \mathbb{Z} / p^{2} \mathbb{E} \pi \mathbb{Z} / p \mathbb{4} / p \mathbb{Z}
$$

IF/ By oren Lemma $\left|Z_{(G)}\right|=p$ r p^{2}. In the latter case, $G=Z(G)$ $\& G$ is abelian. In the framer case $\left|G / Z_{(G)}\right|=P$ so $G / Z(G) \simeq \mathbb{Z} / p \mathbb{Z}$ is cydic. But $H W \mid$ Problem 18 implies G is abelian so $\left|Z_{(G)}\right| \nmid P$.
$T \theta$ finish, we show the classification of G Cuts!
CASE : $\exists g \in G$ of order p^{2}. Then $G=\langle g\rangle \simeq \mathbb{Z} / p^{2} z^{-}$
CASE 2: Even nu-idulity element has order p. We claim

$$
G \simeq \mathbb{Z} / p \mathbb{U} \times \mathbb{Q} \mathbb{Z} \text { (ordinate wise multiplication) }
$$

Sick any $\sigma \in G \vee$ 作 s any $\sigma \in G \backslash\langle\sigma\rangle$. Then:

$$
\langle\sigma\rangle \simeq \mathbb{Z} / p \mathbb{Z} \quad \& \quad\langle\sigma\rangle \simeq \mathbb{Z} / p \mathbb{Z}
$$

Check: (1) $\langle\sigma, \sigma\rangle=G$ because $p\langle |\langle\sigma, \sigma\rangle\left|\left||G|=p^{2}\right.\right.$
(2) $\langle\sigma\rangle,\langle\sigma\rangle \triangleleft G$ because G is abelian
(3) $\langle\sigma\rangle \cap\langle\zeta\rangle=3 e\} \quad$ (Otherwise, $\exists k \in\{1, \ldots, p-1\}$ with $\sigma^{k} \in\langle\sigma\rangle$ But $0\left(\sigma^{k}\right)=p$ became $(k: p)=1$, so $\left\langle\sigma^{k}\right\rangle=\langle\zeta\rangle \subseteq\langle\sigma\rangle$. Contradiction!)

Conclude : $\quad G \stackrel{(\alpha)}{\sim}\langle\sigma\rangle \times\langle\sigma\rangle \simeq \mathbb{Z} / \rho \mathbb{Z} \times \mathbb{Z} / \rho \mathbb{Z}$

$$
\sigma^{k} \zeta^{l} \longleftarrow\left(\sigma^{k}, \sigma^{l}\right)
$$

this is sp hmumerphism \& sarjectise by (1)
Obs 1: Puopritim fails for $|G|=p^{3} \quad\left(\right.$ eg $G=Q_{8}$ or $\left.D_{4}\right)$
Obs 2: (x) uses that G is abelian! But we can get by with less!
(1) We only need $\langle\sigma\rangle \&\langle\zeta\rangle$ to mutually commute.
(2) We need only one of them to be normal

These taro conditions will lead to semidinect products (next time!)
§3. Application: Classify groups of rider 95
Fix G a finite roup with $|G|=45=3^{2} \cdot 5$
Then $n_{3}=\#\{P \leqslant G:|P|=9\} \quad n_{3} \equiv 1(3), n_{3} \mid 5 \Rightarrow n_{3}=1$

$$
n_{5}=|Q \leq G:|Q|=5\} \quad n_{5} \equiv 1(5), n_{5} 19 \Rightarrow n_{5}=1
$$

Conclusion: In a group with $4 T$ elements there is:

- a unique subgroup P of iss $9 \Rightarrow P(B 2) \quad \Rightarrow \triangleleft G$

$$
\text { Qofsize } 5 \quad \stackrel{(B 2)}{\Rightarrow} Q \triangleleft G
$$

Observe (1) If $H=\langle P, Q\rangle \leqslant G$, then $\begin{aligned} 9=|P|| | H \mid \\ 5=|Q|| | H \mid\end{aligned} \Rightarrow|H|=45$. so $H=G$.
(2) If $g \in P \cap Q \Rightarrow \operatorname{ord}(g)\left||P|=9 \quad \begin{array}{rl}\operatorname{ord}(g)| | Q \mid=5\end{array}\right\} \Rightarrow \operatorname{rd}(g)=1$ so $g=e$

Conclusion: $G=\langle P, Q\rangle, P, Q \triangleleft G, P \cap Q=3 e\}$.
By HWI Problem 16: P commutes with Q, ie $a b=b a \quad \forall a \in P, b \in Q$. ($3 f /[a, b] \in P \cap Q=3 e\}$ so a a b commute).

Conclusin: $G=\{p q: p \in P, q \in Q\}$ with group operation
$\left(q p^{\prime}=p^{\prime} q\right.$ becaus P, Q are mutually counuiteng subgps)

Noter: $P \times Q \longrightarrow G$ is group hourourfhitm

$$
(p, q) \longmapsto p q \quad|p \times Q|=|G| \text { so iso! }
$$

By Proporitin $P \simeq \mathbb{Z} / 9 \mathbb{Z}$ or $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z}$ \& $Q \simeq \mathbb{Z} / 5 \mathbb{Z}$, so we undestand G completely: $G \simeq P \times Q$.

