Lecture 10: Short exact sequences
Last Time: 2 characterizatims of semidirect podecto
(1) $H<G, N \triangleleft G$
$G=N H(=H N)$

$$
\begin{aligned}
H \cap N & =3 e \xi \\
m G & =N \triangle H
\end{aligned}
$$

(2) $\alpha: H$ $\qquad$ Aut Gpp $^{(N) \text { sp hum. }}$
$G=N \times H$ as a sit with grous peratim

$$
\begin{aligned}
& \left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1}, \alpha\left(h_{1}\right)\left(n_{2}\right), h_{1}, h_{2}\right) \\
& m G=N x_{\alpha} H
\end{aligned}
$$

(1) $\Rightarrow$ (2)

$$
\begin{aligned}
\alpha=H & \longrightarrow \operatorname{Ant}_{G p}(N) \\
h & \longmapsto\left(g \longmapsto h g h^{-1}\right)
\end{aligned}
$$

(2) $\Rightarrow$ (1) $N \subset G \quad H \longrightarrow G$ group hum $n \longmapsto\left(n, e_{H}\right) \quad h \longmapsto\left(e_{N, h}\right) \quad$ injectese.
Last characterizatim: using short exact sequences.
§1. Shart Exact Sequences:
Buall ( $1^{\text {sr }}$ I somrphism Therrm) $\varphi G \longrightarrow G^{\prime}$ gp ham, then $\frac{G}{k_{\text {er }} \varphi} \stackrel{\bar{\varphi}}{\sim} G^{\prime}$. This statement is often written as:
Thorem: We hase an exact seppence (see dupmitin below):

$$
\mathbb{1} \longrightarrow \operatorname{ker}(\varphi) \xrightarrow{i} G \xrightarrow{\varphi} G^{\prime} \longrightarrow \mathbb{1}
$$

whene: $\mathbb{1}=318$ is the trinial youp

- $i: \operatorname{Ker}(\varphi) \longrightarrow G$ is the natural inclusion

$$
\begin{aligned}
& 1 \longrightarrow \operatorname{ker}(\varphi): 1 \longrightarrow e_{G} \\
& G^{\prime} \longrightarrow 1: g^{\prime} \longrightarrow 1 \quad \forall g^{\prime} \in G^{\prime} .
\end{aligned}
$$

Iefinition: A seperence of goup hemonorfhisus

$$
G_{1} \xrightarrow{\varphi} G_{2} \xrightarrow{\Psi} G_{3}
$$

is said to be exat ( $r$ exact at $G_{z}$ ) if $I_{m} \varphi=\operatorname{Ker} \Psi$.
Obs: $\operatorname{Ker} \Psi \triangleleft G_{2}$ betitingentral $I_{m} \varphi$ is not (unless $G_{2}$ is ablian), So this is a stiong conditim to impose!

Examples: (1) $1>G_{1} \xrightarrow{\Psi} G_{2}$ is exact $\Longleftrightarrow \Psi$ is injectise
(2) $G_{1} \xrightarrow{\varphi} G_{2} \longrightarrow 1$ is exact $\Longleftrightarrow \varphi$ is smjectire.

Def: An exact sepuence of the from

$$
\mathbb{1} \longrightarrow G_{1} \xrightarrow{\varphi} G_{2} \xrightarrow{\Psi} G_{3} \longrightarrow 1
$$

is usually reprosed to as a shart exact sepuence (ses). It sigrities that:
(i) $G_{1}$ can be riewed as a wermal subgroup of $G_{2}$ because $G_{1} \xrightarrow{ } I_{m} \varphi<G_{2}$
(ii) $G_{I_{m} \varphi}=\frac{G_{2}}{\operatorname{Ker} \Psi} \stackrel{\bar{\Psi}}{\sim} G_{3}$ is an iso. $\operatorname{ker} \Psi \triangleleft G_{2}$

Ex: $1^{\text {st }}$ Ismarphism Therem:

$$
\begin{aligned}
& 1 \longrightarrow \operatorname{ker} \varphi \longrightarrow G \xrightarrow{\pi} G / \operatorname{Ker}_{r} \longrightarrow 1
\end{aligned}
$$

Obs: These 2 shast exact sequences are called equinalent (rutical maks should be isos.
The exact sepeuence $1 \longrightarrow G_{1} \xrightarrow{\varphi} G_{2} \xrightarrow{\Psi} G_{3} \rightarrow \mathbb{1}$ also sifnities that we can" build $G_{2}$ out of $G_{1} \& G_{3}$ ". Mre precisely " $G_{2}$ is an extension of $G_{3}$ by $G_{1}$ "
§2 Examples
Ex 1: (Abelean case : Write Tinial op as 0 )

$$
0 \longrightarrow \underset{4}{\mathbb{U}} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0 \quad \text { is a s.e.s. }
$$

Ex2: det: $G L_{2}(\mathbb{C}) \longrightarrow \mathbb{C}, 30 \varepsilon=: \mathbb{C}^{*}$ ( quop under unual multijfication)
is a surjectere group homonorphism $\left(\left[\begin{array}{l}10 \\ 0 \\ \lambda\end{array}\right] \mapsto \lambda\right)$
$\operatorname{Kec}($ det $)=2 \times 2$ matices of ditemminart $1=: S L_{2}(\mathbb{C})$.

$$
1 \longrightarrow S L_{2}(\mathbb{T}) \longrightarrow G L_{2}(\mathbb{C}) \longrightarrow \mathbb{C}^{*} \longrightarrow \mathbb{1} \text { is a s.e.s. }
$$

Ex 3. (Defining $A_{n}=$ allernating group )
Fix $\sigma \in S_{n} \quad$ By $\left.H W 2, \quad l(\sigma)=\# 3 i<j=\sigma(i)>\sigma(j)\right\}$. A/so, $l(\sigma)=$ nin $\#$ d simple taraspsitius used to wite $\sigma$.
$E_{g}: \sigma=(13)=(12)(23)(12)$ so $\quad \ell((13))=3$.
$l($ (l3) $)=\#$ chossing in

(general statement)

Set sign: $S_{n} \longrightarrow\{ \pm 1\}$
$\sigma \longmapsto \operatorname{sign}(\sigma):=(-1)^{\ell(\sigma)} \quad$ (sp hamonirfhison by $H W_{2}$ )
(Proof by picture; $\ell(\sigma \sigma) \equiv \ell(\sigma)+\ell(\sigma)$ (mod 2).)
Def $A_{n}:=\operatorname{Ker}($ sign $)=$ subpoup of esen permutatims $\left(A_{n} \Delta S_{n}\right)$
Ex: $A_{2}=\{11\}, \quad A_{3}=\langle(123)\rangle, \quad A_{4}=\langle(123),(12)(34)\rangle$
(Later in the coorse: we'll see $A_{n}$ is simple fs $n \geqslant 5$.)
$A_{4}$ is not simple: $\left.H=31,(12)(34),(13)(24),(14)(23)\right\} \triangleleft A_{4}$.

$$
\Rightarrow 11 \longrightarrow A_{n} \longrightarrow S_{n} \longrightarrow\{ \pm 1\} \longrightarrow 11 \text { is a s.e.s. }
$$

33. Secterns a Retractims:

$$
F_{\text {ix }} \quad 1 \| G_{1} \xrightarrow{\varphi}, G_{2} \xrightarrow{\Psi} G_{3} \longrightarrow 0 \text { ses }
$$

Q: Can we use $G_{1} \triangleleft G_{2} \& G_{3} T_{0}$ undustand/dhavacterize $G_{2}$ ?
A: Uscally lunowing $N \triangleleft G \& G / N$ does not charactuize $G$ !

But $D_{4} 11 \longrightarrow Q_{8}\{ \pm 1\} \longrightarrow Q_{8} \longrightarrow Q_{8}^{/ 1 \pm 1\}} \longrightarrow 11$.
rdor $\&=r^{2}$ \& mucyclic.

Condude: Answer will defend on extua propecties of $\varphi$ and/ $r \Psi$ !
Dfiritin: A ses is split if we have a sectim, that is, a gp hom $s: G_{3} \rightarrow G_{2}$ with. $\Psi_{0 s}=i_{G_{3}} \quad(\Rightarrow s$ in injectire!)
Definition: A ses is thirial of wh haxe a retractim, that is, a ap hom


Obs 2: tivial a split ses are different things!
Ex: $\left.11 \longrightarrow A_{3} \xrightarrow{i} S_{3} \xrightarrow{\text { sisn }} 3 \pm 1\right\} \longrightarrow 1$
Claim1: $S(-1)=(12)$ satisties signos $=i d_{3 \pm 1\}} . \begin{aligned} & 1 \stackrel{s}{\longrightarrow} \text { id } \xrightarrow{\text { simp }} 1 \\ & (-1) \longrightarrow(12) \rightarrow-1 .\end{aligned}$ $(\Rightarrow$ ses sphts)
Clain2: $\exists_{r}: S_{3} \rightarrow A_{3}$ goham s.t. $\quad \operatorname{oi}=i d_{A_{3}} \quad(\Rightarrow$ ses mutninial!)
Why? set $\sigma=r\left((i j)(i \neq j) \quad o((i j))=2\right.$ but $o(\sigma)| | A_{3} \left\lvert\,=\frac{\left|S_{3}\right|}{2}=3\right.$ So $\quad o(\sigma)=1$.
But every punutation in $S_{3}$ is a prodecet of hanspritius so $S$ must be thirial $m S_{3}$ : $\operatorname{Imr}=11<A_{3}$. Cuttit. since $r$ is smjectise Lemma: A hivial ses alurays splits


$$
\Gamma: B \longrightarrow A \quad \operatorname{co\varphi }=i d_{A}
$$

Want to build a gp him $S: C \subset B$ with $\Psi_{0 S}={ }^{i d}{ }_{C}$. We writh $\operatorname{Ker} r \xrightarrow{\Psi_{\text {lear }}} C \quad$ as homurrpluson.

Ulain 1: $\Psi_{\left.\right|_{\text {ker } r}}$ is imjectire.
3F) Pich $b \in \operatorname{ker} r$ with $\Psi(b)=e_{c}$. so $b \in \operatorname{ker} \Psi \stackrel{\downarrow}{=} \operatorname{Im} \varphi$ so $b=\varphi(a)$ fr $a \in A$.
Then $e_{A}=r(b)=\underbrace{r 0 \varphi}_{1_{A}}(a)=a \quad\left\{b=\varphi\left(e_{A}\right)=e_{B}\right.$
Claim 2: $\Psi_{\text {lker } \Gamma}^{-}$is sugectire
3f/ Biven $c \in C$ pick $b \in B$ with $\Psi(b)=C$. Thes choice is not uniquen, but if $\psi\left(b_{0}{ }^{\prime}\right)=c$ then $b^{\prime}=b \varphi_{(a)}$ fra $\in A$
Pich $b^{\prime}=b \operatorname{Por}_{\in A}^{\left(b^{-1}\right)}$. Nste: $b^{\prime} \in \operatorname{Ker} r$. becouse

$$
r\left(b^{\prime}\right)=r(b) \underbrace{r_{0} \varphi_{\circ}}_{=1_{A}}\left(b^{-1}\right)=r(b)^{r}\left(b^{-1}\right)=e_{B}
$$

Then $\exists \mathrm{s}: C \longrightarrow$ ker $\subset$ © B sp hounurflism with $\Psi_{0 S}=1_{C} . \Rightarrow$ the ses splits.

Split \& Trinial ses will characterize $G_{2}$ as $G_{1} \not \rtimes_{2} G_{3}$ r $G_{1} \times G_{3}$
Proporitim 1: If the ses $11 \rightarrow N \xrightarrow{\varphi} G \xrightarrow{\Psi} H \rightarrow \mathbb{1}$ is Timial, then $G \approx N \times H$ (direct product) when $N \stackrel{\varphi}{\longrightarrow} G$ \& $H \stackrel{3}{\longrightarrow} G$
Broof: Asseme $\exists r: G \longrightarrow N$ retractim Then:



Depine $\eta: G \longrightarrow N \times H^{\exists r}$ ria $\eta(g)=(r(g), \Psi(g))$.

- $\eta$ is ap ham sime both $r$ \& $\psi$ are

Claims): $\eta$ is suyectise:
$3 f /$ Pick $x \in N$ \& $h \in H$. Chose $g \in G$ with $\psi(g)=h \quad(\exists$ because $\Psi$ semi)
Take $\tilde{g}=g(\varphi \text { or }(g))^{-1} \varphi(x) \in G$

$$
\begin{aligned}
& \Rightarrow \Psi(\tilde{g})=\Psi(g) \Psi\left(\varphi_{0 r}\left(g^{-1}\right)\right) \underbrace{\Psi_{0} \varphi_{(x)}}_{=e_{H}}=\Psi_{(g)}^{\Psi_{0} \varphi_{( } \underbrace{r\left(g^{-1}\right)}_{=e_{N}})}=\Psi_{(g)}=h \\
& r(\xi)=r(g) \underbrace{r\left(\varphi_{0 r}\left(g^{-1}\right)\right) \underbrace{r_{0} \varphi(x)}_{r o d_{N}}=\underbrace{r_{(g) r}^{(g)}\left(g^{-1}\right) \cdot x}_{=e_{G}}=x \in N}_{i d_{N}} \\
& \text { so } \eta(\tilde{g})=(x, h)
\end{aligned}
$$

Claim 2: $\eta$ is injectise.
Pf If $\eta(g)=\left(e_{N}, e_{H}\right)$ then $\Psi(g)=e_{H}$, so $g \in \operatorname{Kec} \Psi=\operatorname{Im}_{m} \varphi$.
$\left.\begin{array}{l}\text { Then, } \exists x \in N \text { with } g=\varphi(x) \\ \Rightarrow e_{N}=r(g)=r_{0} \varphi(x)=x\end{array}\right\} \Rightarrow g=\varphi\left(e_{N}\right)=e_{G}$.
It is easy to check all squares commute.
Peoproitim 2: If a ses $\mathbb{H} \rightarrow N \xrightarrow{\varphi} G \underset{\sim}{\Psi}, H \rightarrow 1$ splits, then $G \simeq N \rtimes H$ where $N \subset \varphi \&^{-s} H \subset \xrightarrow{s} G$
SF/ Know: $N \underset{\varphi}{\triangleleft} G$ \& $H \underset{s}{<} G$.
Claw: $\quad s(H) \cap \varphi(N)=\{e\}$
Pick $g \in S(H) \cap \varphi(N)$ then $g=s(h)=\varphi(x) \quad x \in N, h \in H$

$$
\left.\begin{array}{rl}
\Rightarrow \Psi(g) & =\Psi_{0} s(h)=h \\
& =\psi_{0} \varphi(x)=e_{H}
\end{array}\right\} \Rightarrow g=s\left(e_{H}\right)=e_{G}
$$

Claim 2: $\quad$ NH $=\{\varphi(x) s(h) \quad x \in N, h \in H\}=G$
Pick $g \in G \Rightarrow \Psi_{(g)} \in H$
Pock $\tilde{g}=$ so $\Psi(\tilde{g})$. It satisfies $\Psi(\tilde{g})=\Psi(\tilde{g})$, so

$$
\tilde{g}^{-1} g \in \operatorname{Kec} \psi=\operatorname{Im} \varphi \text { so } \bar{g}^{-1} g=\varphi(x) \text { fos sme } x \in N \text {. }
$$


By definitim, $G=\varphi_{(N)} \nsim S(H) \simeq N \nsim H$.
Example: $\left.11 \longrightarrow A_{n} \xrightarrow{i} S_{n} \xrightarrow{\text { sim }} 3 \pm 1\right\} \longrightarrow 1$ sflits
$(12) \longleftrightarrow-1$
so $\quad S_{n}=A_{n} \times \mathbb{Z} / 2 \mathbb{Z}$.
Therum: If $N<G$ has index two, then $G \cong N \rtimes \mathbb{Z}_{2}$
Pf/. $N \triangleleft G$ becaure $G / N=\{e N, g N\}$ fo sume $g \notin N$

$$
N G=\{\mathrm{eN}, \mathrm{Ng}\}
$$

so $g N=N g$.

- Pich $h \in G \backslash N$ of rorder $2 \quad g^{2} \in N$ so $g^{2}=e \quad$ r $o\left(g^{2}\right)=k$ $\operatorname{sog}\left(\mathrm{g}^{k}\right)=2$ )
Then

$$
\left.\begin{array}{ll}
H=\langle h\rangle<G & \\
H \cap N=\{e\} \quad \text { since } & h \notin N \\
N H=G \quad \text { becoure } & |N| G \mid=2
\end{array}\right\} \quad \begin{aligned}
& G=N \nsim H \simeq N \rtimes \mathbb{Z}_{2}
\end{aligned}
$$

