Lecture 13: Solvable & Nilpstent Groups <u>Gecall</u>: We defined the derived series of a proof of rig (A:B) = <[a,5] = aba⁻¹b⁻¹ : a ∈ A, b ∈ R > ≤1 G if A, B < G . D^o(G) = G , Dⁿ⁺¹(G) = (Dⁿ(G), Dⁿ(G)) . <u>Main projecty</u>: <u>H</u> is abelian, rence any subgroup of H intaining (H, H) is normal. Conservely, if A < H & H_A is abelian, then (H, H) ∈ A.

<u>\$1. Solvable groups:</u>

. Solvable groups:
$$D^{N}(G) = 3e^{2}$$
 for some N≥O.
Equir: \mathfrak{D} : $G \ge D(G) \ge D^{2}(G) \ge \dots \ge D^{N}(G) = 3e^{2}$ is
a composition series for $G \not\in D^{2}(G)$ is abelian. Hi
 $D^{j+1}(G)$

Lemma: The group of apper triangular insertible matrices is solvable.

$$\overline{Og}: B := J \begin{pmatrix} a \\ o \\ d \end{pmatrix} \quad a, d \in \mathbb{C}^{\times}, b \in \mathbb{C}^{2}$$

 U
 $D(B) = J \begin{pmatrix} i \\ o \\ i \end{pmatrix} : x \in \mathbb{C}^{2}$
 U
 $D^{2}(B) = 3e^{2}$

$$\begin{aligned} & \mathcal{F}/. \text{ Assume } D(B) \text{ is as claimsd}, \text{ then } D(B) \simeq \mathcal{F} \text{ abelian} \\ & \Rightarrow D^{2}(B) = 4e\xi. \\ & \text{. We argue the claim for } D(B) \text{ holdo by explicit completation} \\ & A = \begin{pmatrix} a \\ o \\ d \end{pmatrix}, A' = \begin{pmatrix} a' \\ o \\ d' \end{pmatrix} \\ & A' A^{-1}(A')^{-1} = \frac{1}{ad a'd'} \begin{pmatrix} a \\ o \\ d \end{pmatrix} \begin{pmatrix} a' \\ b' \\ o \\ d' \end{pmatrix} \begin{pmatrix} d - b \\ o \\ d' \end{pmatrix} \begin{pmatrix} d' - b' \\ o \\ a' \end{pmatrix} \end{aligned}$$

<u>Broof</u>: We will show $D^{5}(G) \subseteq G_{j}$ by induction m_{j} . In particular $D^{n}(G) \subseteq j \in i$ so $D^{n}(G) = j \in i$ and $D^{n}(G) = j \in i$ and $D^{n}(G) = j \in i$. Base case: j=0 is clear since $D^{\circ}(G) = G = G_{\circ}$. Inductive Step: Assume $D^{2}(G) \subset G_{j}$. Since G_{j}/G_{j+1} is abelian, then $D(G_j) \subseteq G_{j+1}$ But $D(G_j) = D^{3+1}(G)$ So $D^{3+1}(G) = D(D(G_{j})) \subseteq D(G_{j}) \subseteq G_{j+1}$, as we wanted DCorollary: G is solvable (=> 7 cmp series with abelian graded pieces. Theorem 2: Let G be a p-group. Then, there exists a comp suites for G $G = G_0 \xrightarrow{2} G_1 \xrightarrow{2} G_2 \xrightarrow{2} \cdots \xrightarrow{2} G_r = \frac{1}{2} e_r$ with $q_{ij}(G) = G_{ij}/G_{i+1} \simeq Z/PZ$ $\forall i = 0, ..., c-1$ Broof: By induction on k where $|G| = p^k$. Base case: k = 1 is clear since $G \simeq \frac{3}{p_Z}$ (r=1 will do) · Inductive Step: Fix Z=Z(G) unter of G. Recall that the unter of a 1-group is always nontrivial. Tick x ∈ Z < 3et. So order (x)=p^s a s≥1 a ×^p has rdup. Set $H = \langle x^{p^{s-1}} \rangle \subset \mathcal{Z}$ so $H \trianglelefteq G \mathrel{.} \mathfrak{L} H \simeq \frac{2}{p^2}$ Now $|G_{H}| = p^{t-1}$ & by inductive hypothesis we can find a composition series for G/H: $G'_{H} = \overline{G}_{0} \ge \overline{G}_{1} \ge - - \ge \overline{G}_{r} = \{eH\}$ with Gi ZZ pr all i=0,..., r-1. Git: PZ Now, we use $\overline{U}: \overline{G} \longrightarrow \overline{G}_{H}$ to define $\overline{G}_{j} = \overline{U}(\overline{G}_{j})$.

By
$$2^{nk}$$
 Isomorphism Theorem $G_{j+1} \triangleleft G_j$ $\forall j \in H \triangleleft G_j \forall j$
Furthermore $G_{j+1} \simeq \frac{G_{j}}{G_{j} \vee_{H}} = \frac{G_{j}}{G_{j}} \simeq \frac{Z}{R}$
 $G_{r} = H \equiv Z_{RZ}$, $G_{0} = G$
So $G = G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{r} = H \supseteq G_{r+1} = 3et$ is the
composition since we use after.
Decollary 2: Every γ -grow is noticable.
 $F/$ Take the composition varies from Thinz a use Z_{R} is abelian \Box
Proposition: Let G be a group $a \in N \triangleleft G$. Then, G is solvable
if, and rights, $N \equiv G_{N}$ are .
Equivalent statement. $\Box \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow G_{3} \longrightarrow \Box$ sets
Then G_{2} is solvable. $\Box = G_{1} \boxtimes G_{3}$ are solvable.
Example $G = D_{n}$, $N = \leq P \triangleleft G$ $G_{N} \simeq Z_{2Z}$ both solvable.
Example $G = D_{n}$, $N = \leq P \triangleleft G$ $G_{N} \simeq Z_{2Z}$ both (abelian),
so D_{n} is solvable.
Subjections of $G = 2ef \implies N$ (solvable.
 $G = 1ef$ Then $D^{n}(N) \cong D^{n}(G) = 2ef \implies N$ (solvable.
 $G = 1ef$ $G = 1ef$ $G = 1ef$ $G = N \subseteq S_{1} \otimes G_{1}$ $G = 1ef$
Then $D^{n}(N) \cong D^{n}(G) = 2ef \implies N$ (solvable.
 $G = 1ef$ $G = 1ef$ $G = N \in S_{1} \otimes G_{1}$ $G = 1ef$
Then $D^{n}(N) \cong D^{n}(G) = 2ef \implies N (solvable.$
 $G = 1ef$ $G = 1ef$ $G = N \in S_{1} \otimes G_{1}$ $G = 1ef$
Then $D^{n}(N) \cong D^{n}(G) = 2ef \implies N (solvable.$
 $G = 1ef$ $G = 1ef$ $G = N (solvable.$
 $G = 1ef$ $G = 1ef$ $G = N (G_{1}) = 1ef$ $G(G_{1}) = 1ef$ $G(G_{1})$
 $G = 0^{n}(G_{1}) = T(G(G)) = 1ef$ $(T (G_{1}), T(G_{1})) = D(G_{1})$
 $So D^{n}(G_{1}) = T(G(G)) = 3ef$ $So G_{1}$ is solvable.

(*) Now, assume N & G/N are solvable. By Theorem 1 is have
importion with for N & G/N with abelian praded pieces

$$\Sigma: N=N_0 \ge N_1 \ge \cdots \ge N_{K} = let
Nie abelian $\forall i=0,...,k-1$.
 $\Sigma': G_N = \overline{G_0} \supseteq \overline{G_1} \supseteq \cdots \supseteq \overline{G_S} = 3e_{G_N} \{ G_1 \longrightarrow V_{S=0,...,k-1}, \dots, V_{S=0},...,k-1}$.
St $T_i: G \longrightarrow G/N \ll G_1 = T_i^{-1}(\overline{G_1}) = V_1 = 0,...,k-1$.
St $T_i: G \longrightarrow G/N \ll G_1 = T_i^{-1}(\overline{G_1}) = V_1 = 0,...,k-1$.
St $\overline{G_{S=N}}, G_0 = \overline{G_1} \supseteq \ldots \supseteq \overline{G_{S=N}} \supseteq delian (N < G_1 + V_1)$
St $\overline{G_{S+1}} = N_1$ for $i=1,...,k$. Thue,
 $\Sigma'' \subseteq G_0 \supseteq G_1 \supseteq \ldots \supseteq G_S = N \supseteq G_{S=1} \supseteq \ldots \supseteq G_{S+K} = 3e_1$
is a comparative for G with abelian quaded blaces. By Thur, G is solvable. If
 $Q:$ What can us say about Indon-Hölder socies of finite, solvable gis?
Proposition: Tixe G a finite group. Thus, the following are equivalent:
(1) G is solvable
(2) $g_{1,2}^{-\Sigma}(G_1)$ is cyclic of frame order V_1 for erree Indon-Holder
suice Σ of G.
(3) $g_{1,3}^{-\Sigma}(G_1)$ is cyclic of frame order V_1 for erree Indon-Holder
suice Σ of G.
(1) \Longrightarrow (3) Assume G is solvable a pick any Indon-Holder suice
 $\Sigma_1 \neq G$ (it exists because G is finite)
Rich a compared $\Sigma_2 \neq G$ will abelian yraded pieces (it exists because
G is solvable). By Schwar's Thus we can find reference of Z_1 , Z_2 that are equivalent. (all them $\Sigma'_1 \le \Sigma'_2$, respectively$$

So the product pieces of
$$\Sigma'_{i}$$
 are rither timed or simple
. The product pieces of Σ'_{i} are abelian (rine are an infimiting Σ_{i} as Σ_{i} are abelian (rine are an infimiting Σ_{i} as Σ_{i} and Σ_{i} are abelian.
 $\Rightarrow g_{1}\Sigma_{i}^{2}(G_{i}) = 3e\xi$ π $Z_{1}Z_{i}$ with f prime.
Since Σ_{i} was TH to begin with, we conclude that $g_{1}\Sigma_{i}(G) \simeq Z_{1}^{2}$
where $f_{1} > 0$ is prime f_{1} all i . These (s) holds.
 Ξ Lower Central Series
We now define a new sequence involving a new commutator.
Set $C^{i}(G) = G$
 $C^{n+1}(G) = (G, C^{n}(G))$ $\forall_{n \geq 1}$ ($\neg G \in C^{n}(G) \neg G$)
By induction $m n$ we see $C^{n}(G) \neg G$ $\forall n$
Lemma: $C^{n+1}(G) < C^{n}(G)$ so $C^{n+1}(G) \neg C^{n}(G)$
But $C^{i}(G) \neg G$, we conclude: $C^{n+1}(G) \neg C^{n}(G)$.
But $C^{i}(G) \neg G$, we conclude: $C^{n+1}(G) \neg C^{n}(G)$. \Box
We build the sequence:
 $\mathcal{G}: G = C^{i}(G) \supseteq C^{2}(G) \supseteq C^{3}(G) \supseteq \dots$
Definition: G is mill petent if $\exists n \geq 1}$ such that $C^{n}(G) = bet$.

Equivalently, & is a comprotion series for G.