Lecture 13: Solvable \& Nilpstent Groups
Pecall: We defined the duived series of a poup G ria $(A: B)=\left\langle[a, b]=a b a^{-1} b^{-1} \quad: a \in A, b \in R\right\rangle \Delta G$ if $A, B \triangleleft G$

$$
\cdot \Delta^{0}(G)=G \quad ; D^{n+1}(G)=\left(D^{n}(G), D^{n}(G)\right)
$$

- Main profecty_: $\frac{H}{(H, H)}$ is abelian, hence any subgroep of H cuntaining (H, H) is normal. Conserly, if $A \triangleleft H \& H / A$ is abclian, then $(H, H) \subseteq A$.
si. Sohrable groufs:
- Sohable groufs: $D^{N}(G)=\{e\}$ fr rme $N \geqslant 0$.

Equir: D: $\left.G \geq D(G) \geq D^{2}(G) \geq \ldots . . \geq D^{N}(G)=3 e\right\}$ is a comprition series for G \& $D^{j}(G) /(G)$ is abetion $H_{j}^{j+1}(G)$
Lemmen: The group of apper trianfular innertible matries is sohable.
Eg: $\quad \begin{aligned} & B:=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \quad a, d \in \mathbb{C}^{x}, b \in \mathbb{C}\right\} \\ & U\end{aligned}$

$$
\begin{aligned}
& D(B)=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right): x \in \mathbb{C}\right\} \\
& u \\
& D^{2}(B)=\{e\}
\end{aligned}
$$

Pf/. Assume $D(B)$ is as claimsd, then $D(B) \simeq \Phi$ abelian

$$
\Rightarrow D^{2}(B)=\{e\} .
$$

- We arger the claim fo $D(B)$ wolds by explicit anpentation

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), A^{\prime}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right) \\
\Delta A^{\prime} A^{-1}\left(A^{\prime}\right)^{-1}=\frac{1}{a d a^{\prime} d^{\prime}}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
d^{\prime} & -b^{\prime} \\
0 & a^{\prime}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{a d a^{\prime} d^{\prime}}\left(\begin{array}{cc}
a a^{\prime} & b^{\prime} a+b d^{\prime} \\
0 & d^{\prime}
\end{array}\right)\left(\begin{array}{cc}
d d^{\prime} & -b^{\prime} d-b a^{\prime} \\
0 & a a^{\prime}
\end{array}\right) \\
& =\frac{1}{a d a^{\prime} d^{\prime}},\left(\begin{array}{cc}
a a^{\prime} d d^{\prime} & a a^{\prime}\left(b^{\prime} a+b d^{\prime}-b^{\prime} d-b a^{\prime}\right) \\
0 & d^{\prime} a a^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \quad x=\frac{1}{d d^{\prime}}\left(b^{\prime}(a-d)-b\left(a^{\prime}-d^{\prime}\right)\right) \\
& \Rightarrow D(B)=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad x \in \mathbb{C}\right\} \simeq \mathbb{C} \quad \text { abelian }
\end{aligned}
$$

$\begin{array}{rl}\text { Recall :(1) } D^{0}(G) & =j e\} \\ \text { (2) } D^{\prime}(G) & =3 e\}\end{array} \Leftrightarrow G$ is hivial $\quad G$ is abelian $\}$ Both examples of sohable
(3) If G is mn-abelian \& simple, then $D^{n}(G)=G$ for all $n \geqslant 0$, so G is not solvable.

Ex: $D^{0}\left(S_{n}\right)=A_{n}$ and A_{n} is $\operatorname{simplef}_{\text {nation }}$ fr $n \geqslant 0$, so S_{n} is not solvable fo $n \geqslant 5$.
Pf/ Assume A_{n} is simple $f>x \geqslant 5$. Then

$$
[\sigma, \sigma]=\sigma 6 \sigma^{-1} \sigma^{-1} \in A_{n} \text { fr all } \sigma, \sigma \quad \Rightarrow D^{0}\left(S_{n}\right) \subseteq A_{n}
$$

. Since S_{n} is not abelian $D^{\circ}\left(S_{n}\right) \neq\{e\}$

$$
\begin{aligned}
& \Delta^{0}\left(S_{n}\right) \triangleleft S_{n} \Rightarrow \Delta^{\prime}\left(S_{n}\right) \triangleleft A_{n} \text { frees } D^{\circ}\left(S_{n}\right)=A_{n} . \\
&\}^{*} e r
\end{aligned}
$$

Obs: This will be used to show that quintic rhigher deque prymuials cannot be solved by cadicals (like the quadratic prlymuists in $\mathbb{C}_{[x]}$)

Theorem: Let G be a group, and assume it hes a campritim series

$$
\Sigma: G=G_{0} \geq G_{1} \geq \ldots \geq G_{n}=3 e \varepsilon
$$

where each $g_{i}(G)=\frac{G_{i}}{G_{i+1}}$ is abelian. Then, G is solvable.

Proof: We will show $D^{j}(G) \subseteq G_{j} \forall_{j}$ by induction on j In particular $D^{n}(G) \subseteq\{e\}$ so $D^{n}(G)=3 e \varepsilon \& G$ is solvable.
Base case: $j=0$ is char since $D^{0}(G)=G=G_{0}$.
Inductive step: Assume $D^{j}(G) \subset G_{j}$. Since $G_{j} / G_{j \rightarrow 1}$ is abelian, then $D\left(G_{j}\right) \subseteq G_{j+1}$ But $D\left(G_{j}\right)=D^{3+1}(G)$ So $D^{j+1}(G)=D\left(D\left(G_{j}\right)\right) \subseteq D\left(G_{j}\right) \subseteq G_{j+1}$, as we wanted Corollary : G is sohable $\Leftrightarrow \exists$ comp series with abelian graded pieces.

Theorem z: Let G be a p-group. Then, there exists a coup sues $f s$

$$
G=G_{0} \supsetneq G_{1} \ngtr G_{2} \supsetneq \cdots \not \ni G_{r}=3 e \varepsilon
$$

with of $(G)=G_{j} / G_{j+1} \simeq \mathbb{Z} / p \mathbb{Z} \quad \forall i=0, \ldots, r-1$
Prove: By induction on k where $|G|=p^{k}$.

- Basecase: $k=1$ is clear since $G \simeq \mathbb{T} / p \mathbb{Z} \quad(r=1$ will do)
- Inductive step: Fix $Z=Z(G)$ enter of G. Recall that the cutter of a 1 -group is always nontrivial.
Pick $x \in Z \backslash 3 e\}$. So $\operatorname{order}(x)=p^{s}$ \& $s \geq 1 \& x^{p^{s-1}}$ has rda p. Set $H=\left\langle x^{\left.p^{p-1}\right\rangle}\right\rangle \not Z$ so $H \Delta G . \& H \simeq \mathbb{Z} / p \mathbb{Z}$ Now $|G / H|=p^{t-1}$ \& by inductive hypothesis we can find a composition series: $f \cap G / H$:

$$
G / H=\bar{G}_{0} \geq \bar{G}_{1} \geqslant-\cdots \bar{G}_{r}=\{e H\}
$$

with $\bar{G}_{G_{i+1}} \simeq \mathbb{Z} / \rho \mathbb{Z}$ fr all $i=0, \ldots, r-1$.
Now, we use $\pi: G \longrightarrow G / H$ to define $G_{j}=\pi^{-1}\left(\bar{G}_{j}\right)$.

By $2^{\text {nd }}$ Isomurphisom Therem $G_{j+1} \triangleleft G_{j} \quad \forall j \quad \& H<G_{j} \forall j$ Furthermore $G_{j} \simeq \frac{G_{j} / H}{G_{j+1}}=\frac{\bar{G}_{j+1}}{G_{j+1}} \simeq \mathbb{Z} / P \mathbb{Z}$

$$
\text { - } G_{r}=H \simeq \mathbb{Z} / \mathbb{Z}^{z} ; \quad G_{0}=G
$$

So $\left.G=G_{0} \geq G_{1} \supseteq \cdots \geq G_{r}=H \geq G_{r+1}=3 e\right\}$ is the sompuritim seris we whe after.

Corollayz: Eteny p-poup is solvable.
PF/ Take the compossitim secies hun Thmz \& use $\mathbb{Z} / \mathbb{\mathbb { Z }}$ is abelian
Popprition: Let G be a goup $\Delta N \triangleleft G$. Then, G is sohable if, and mly if, $N \& G / N$ are.
Equinalent statement: $\mathbb{1} \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow G_{3} \longrightarrow \mathbb{1}$ ses Thm G_{2} is solvable $\Leftrightarrow G_{1} \& G_{3}$ are solvable.
Examkle $G=D_{n}, N=\langle p\rangle \triangleleft G \quad G / N \simeq \mathbb{Z} / 2 \mathbb{Z} \quad$ both soleable, so D_{n} is soluable.
Pooof: \Leftrightarrow Finst, arsume G is sotrable \& fich $n \geqslant 0$ with $D^{n}(G)=3 e 8$ Then $D^{n}(N) \subseteq D^{n}(G)=3 e \varepsilon \quad \Rightarrow N$ is solvable.
\rightarrow char ly easy inductim $D^{j}(N) \subseteq D^{j}(G)$ prall j
If $\pi: G \longrightarrow G / N$ is the notural progection, then:

$$
\pi(D(G))=\pi((G: G)){ }_{\pi}=(\pi(G) ; \pi(G))=D(G / N)
$$

Thees $\pi\left(D^{D^{+1}}(G)\right)=D\left(D^{j}(G / N)\right)=D^{j+1}(G / N)$
So $\left.D^{n}(G / N)=\pi(\{e\})=3 e_{G / N}\right\}$ so G / N is solvable
(\Leftarrow) Now, assume $N \& G / N$ are sohable. By Theorem 1 we have comprition series is $N \& G / N$ with abelian graded pieces
$\left.\Sigma: N=N_{0} \geq N_{1} \geq \ldots \geq N_{k}=3 e\right\} \quad \frac{N_{i}}{N_{i+1}}$ abeam $\forall i=0, \ldots, k-1$.
$\left.\Sigma^{\prime}: G / N=\bar{G}_{0} \supseteq \bar{G}_{1} \geq \ldots \geqslant \bar{G}_{s}=3 e_{G / N}\right\} \quad G_{j} \quad \quad \quad \forall j=0, \ldots, s-1$.
Set $\pi: G \longrightarrow G / N \& G_{j}=\pi^{-1}\left(\bar{G}_{j}\right) \quad \forall j=0, \ldots, s$
So $G_{s}=N, G_{0}=G \quad \& G_{j} G_{j+1} \simeq \bar{G}_{G_{j+1}}$ abelian $\left(N<G_{j} \forall J\right)$
Set $G_{S+i}=N_{i}$ fr $i=1, \ldots, k$. Then:

$$
\left.\Sigma^{\prime \prime} G=G_{0} \geq G_{1} \supseteq \ldots \geq G_{s}=N \geq G_{s+1} \supseteq \cdots \geqslant G_{s+k}=3 e\right\}
$$

is a amp series of G with abelian graded pieces. By ThaI, G is solvable. I
Q: What can we say about Jrdan-Hölder series of finite, solvable gps?
Proposition: Fix G a pinite group. Then, the following are equivalut,
(1) G is solvable
(2) $\operatorname{grij}^{\sum}(G)$ is cyclic of prime rider $\forall j$ for sue Jrdou-Holder series Σ of G.
(3) $\mathrm{gr}_{j} \sum(G)$ is cyclic of pine odor $\forall j$ for ALL Jrdon-Holdor series Σ of G.
Proof: (3) $\Rightarrow(2) \Rightarrow(1)$ is char.
$(1) \Rightarrow$ (3) Assume G is sohable \& pick any Jrdon-Holder seines Σ_{1} of G (it exists Lecouse G is finite)
Pick a comp serves Σ_{2} of G will abelian graded pieces (it exists because G is solvable). By Schier's Thun we can find refinement of Σ_{1} \& Σ_{2} that are equivalent. Call them $\Sigma_{1}^{\prime} \& \Sigma_{2}^{\prime}$, respectively
. So the paraded pieces of ε^{\prime}, are cither trivial or simple

- The jaded pieces of Σ_{2}^{\prime} an abclian (since of are repining $\Sigma_{1} \&$ By rquiralence, the graded pieces of ε^{\prime} its graded pieces were ablion) By equivalence, the graded pieces $r \Sigma^{\prime}$, are Trivial r
$\Rightarrow g_{i}^{\prime}(G)=.3 e \varepsilon$ or $\mathbb{Z} / p \mathbb{Z}$ with p prime.
Sine Σ_{1} was JH to begin with, we conclude that $\delta_{i}^{\sum_{1}}(G) \approx \mathbb{Z} / p_{i} \mathbb{Z}$ where $p_{i}>0$ is pine 17 all i. Thees (3) holds.
\$2. Lower Central Series
We now define a new sequence involving a new conmuitater.
set $C^{\prime}(G)=G$

$$
C^{n+1}(G)=\left(G, C^{n}(G)\right) \quad \forall n \geqslant 1 \quad\left(\Delta G \text { if } C^{n}(G) \Delta G\right)
$$

By induction n we see $C^{n}(G) \triangleleft G \quad \forall n$
Lemma: $C^{n+1}(G)<C^{n}(G)$ so $C^{n+1}(G) \triangleleft C^{n}(G)$ Pf/ $C^{n+1}(G)=\langle\underbrace{g x g^{-1} x^{-1}}_{\in C^{n}(G)}: g \in G, x \in C^{n}(G)\rangle\left\langle C^{n}(G)\right.$ But $C^{n}(G) \triangleleft G \quad \in C^{n}(G) C^{n}(G)$
Since $C^{n+1}(G) \triangleleft G$, we conclude: $\quad C^{n+1}(G) \triangleleft C^{n}(G)$.
We build the sequence:

$$
\xi: \quad G=C^{\prime}(G) \geq C^{2}(G) \geqslant C^{3}(G) \geqslant \ldots
$$

Definition: G is nilprent if $\exists n \geqslant 1$ such that $C^{n}(G)=\{e\}$. Equivalently, ζ is a comprition series fo G.

