Lecture 14: Nilptent groues, Simpficity of $A_{n} f r n \geqslant 5$
Recall: Last time we defined milptent poups 4 choractorize sohable gys
S1. Nilptent poups:

- Lower central series

$$
G=C^{\prime}(G) \triangleleft C^{2}(G) \triangleleft \ldots \triangleleft C^{n}(G) \triangleleft C^{n+1}(G) \triangleleft
$$

where $C^{\prime}(G)=G$

$$
C^{n+1}(G)=\left(G, C^{n}(G)\right) \quad \forall n \geqslant 1 \quad\left(\Delta G \text { if } C^{n}(G) \Delta G\right)
$$

IPpinition: G is nilpotent if $\exists n \geqslant 1$ such that $\left.C^{n}(G)=3 e\right\}$. Equivaluntly, ζ is a comprotim series fo G.
Examples $(1) G=\mathbb{Z} / 6 \mathbb{Z}, \quad C^{2}(G)=(G, G)=1$ (G ablion)
(2) $G=D_{n} \quad C^{2}(G)=\left\langle p^{2}\right\rangle$

$$
\begin{aligned}
& C^{3}(G)=\left(G,\left\langle p^{2}\right\rangle\right)=\left\langle\left[s \rho^{i}, e^{2 j}\right]: \quad: \begin{array}{c}
i=0, \ldots, n-1\rangle \\
j=0, \ldots, n-1
\end{array}=\left\langle p^{4}\right\rangle\right. \\
& \operatorname{sp}^{i} p^{2} j\left(s e^{i}\right)^{-1} e^{-2 j}=s \rho^{2 j} s \rho^{-2 j}=e^{-4 j} \\
& C^{4}(G)=\left(G,\left\langle p^{4}\right\rangle\right)=\left\langle e^{8}\right\rangle
\end{aligned}
$$

By induction: $C^{m+1}(G)=\left\langle p^{2^{m}}\right\rangle \quad \forall m \geqslant 1$.
Conclude : D_{n} is milptent if and mly if n is a powen of 2.
Remarks: E satisfies the fellowing poperties:
(1) $\left(G, C^{n}(G)\right)=C^{n+1}(G) \quad \forall n \quad C^{n+1}(G) \triangleleft C^{n}(G)$
(2) $\frac{C^{n}(G)}{C^{n+1}(G)}$ is abelian $\forall n$

$$
\left(\operatorname{bec} \text { cause }\left(C^{n}(G): C^{n}(G)\right) \subseteq\left(G, C^{n}(G)\right)=C^{n+1}(G), \nu\right)
$$

(3) $C^{2}(G)=(G, G)=D^{\prime}(G)$
(4) $\left(C^{n}(G), C^{m}(G)\right) \subset C^{n+m}(G)$ (Exencise HwS)
$\Rightarrow D^{l}(G) \subseteq C^{2^{l}}(G)$ frall $l \geqslant 0$.
3F/ Trie for $l=0$ \& $l=1$.

$$
D^{l+1}(G)=\left(D^{l}(G), D^{l}(G)\right) \subseteq\left(C^{2^{l}}(G), C^{2^{l}}(G) \subseteq C^{2^{l}+2^{l}}(G)\right.
$$

Coollary: Nilptent \Rightarrow Solvable
10 Solvable \nRightarrow Nilpotent (eg D_{3} is solvable but not nilpotent)
Nilptent gooups can be haracterized by hasing compritim series with seecial praded pieces, as we did with sohmable. The's is the content of the wext therem.
Thouem 1: G is milpitent if and mly if it has a cmpsitim series

$$
\Sigma: G=G_{0} \geq G_{1} \geq \ldots \geq G_{n}=\{e\}
$$

with (1) $g_{j}{ }_{j}^{\varepsilon}(G)=G_{j} G_{j+1}$ is abelian $\forall j=0, \ldots, n-1$

$$
\text { (2) }\left(G_{1} G_{j}\right) \subset G_{j+1} \quad \forall j=0, \ldots, n-1
$$

Remarle: (2) \Rightarrow (1) because $\left(G_{j}, G_{j}\right) \subset\left(G, G_{j}\right) \subset_{\text {(2) }} G_{j+1}$ frees G_{j} / G_{j+1} to be abelian.
Prool of Thm $1 \underset{j^{j+1}}{\Rightarrow}$) Take $G_{j}=C^{J^{-1}}(G)$ hom lower cential secies. $(\Leftarrow$ It's enough to check the following

Claim: $C^{j+1}(G) \subseteq G_{j} \quad \forall j=0, \ldots, n$

$$
\begin{aligned}
& \left(\Rightarrow C^{n+1}(G) \subseteq\{e\},\right. \\
& \\
& \left.s_{0} C^{n+1}(G)=\{e\}\right)
\end{aligned}
$$

PF/ By induction m j:

- Base care: $j=0 . C^{\prime}(G)=G=G_{0}$.
- Inductire step: $F_{i x} j>0$ \& assum $C^{j}(G) \subseteq G_{j-1}$.

$$
C^{j+1}(G)=\left(G, C^{j}(G)\right) \underset{\substack{j \\ ⿺ 𠃊}}{ }\left(G, G_{j-1}\right) \subseteq G_{\left(\frac{L}{2}\right)}
$$

Barporition:
(1) Subpoups and quatients of milpitent poups are nilprtent [Same proof as fr solmble proups (see Lecture (3)]
(2) G is milp.tent if and mly if there is a subproup $A C Z(G)$ with G / A nilpotent.
Prool: We only ned To show \Leftrightarrow. Casider $\pi: G \longrightarrow G / A$ $(A \triangleleft G$ becouse $A \subset Z(G))$ pick n with $C^{n}(G / A)=3 e \rho$
Claim: $\pi\left(C^{k}(G)\right)=c^{k}(G / A) \quad \forall k$
Prool: By inductim: $m k$

- $k=1: \pi(G: G)=(\pi(G): \pi(G))$
- Inderdine step: $\quad C^{k+1}(G)=\left(G: C^{k}(G)\right) \quad$ so

$$
\pi\left(C^{k+1}(G)\right)=\left(\pi(G): \pi\left(C^{n}(G)\right)_{[(\bar{H}]}\left(G_{A}: C^{n}(G / \lambda)\right)=C^{n+1}(G / A)\right)
$$

Then, $\pi\left(C^{n}(G)\right) \stackrel{(\alpha)}{=} C^{n}(G / A)=$ he\} $\underset{\operatorname{ker} \pi=A}{\Rightarrow} C^{n}(G) \subset A$ By $A \subset Z(G)$ so $\left.C^{n+1}(G)=(G: A)=3 e\right\}$.

10 The last statement pails if A is not included in $Z(G)$, ie $\mathbb{N} \longrightarrow G_{1} \longrightarrow G_{2} \longrightarrow G_{3} \rightarrow \mathbb{1}$ ses \& G_{1}, G_{3} nilptent $\nRightarrow G_{2}$ is milptent.

Excumple: $\quad G_{2}=\left\{\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]: a, d \in \mathbb{C}^{x} \quad b \in \mathbb{C}\right\}$

$$
G_{2} \triangleright G_{[H W 3]}=\left\{\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] ; \quad x \in \mathbb{C}\right\}: \mathbb{C}
$$

$G_{2} G_{1}=\mathbb{C}^{x} \times \mathbb{C}^{x} \quad$ (diagmal enties.)

- $G_{1} \& G_{2} / G_{1}$ ne nilprient
(see HW5)
- G_{2} is solvable but not milprent

Crollary: Every p-group is milptent.
Shood By inductim m $k \geqslant 1$ with $|G|=p^{k}$.

- Char for $k=1: \quad G \simeq \mathbb{Z} / \mathbb{Z}_{2}$ so abdian, hence nilptent
- Inductire step:

We know $Z(G) \neq$ jer so $Z(G)=\rho^{s} \quad 1 \leq s \leq k$ CASEI If $G=Z(G)$, then G is abclian, hence milprient CASE2 It $s<k$, then by inductire hypthesis: $Z_{(G)}$ is milptent \& $|G / Z(G)|=p^{k-s} \quad k-s<k$, so also nilpstent.
By Proproitim (2), G is milptent.
In fact, more is thee: the mly milpitent goups are direct peodects of 1 -groups. The proof of this fact is a homeworle exereise, and dyfuds on the following:
Lemma: Lit G be a milpotent poup a $H \underset{X}{ } G$. Then:

$$
H \subset N_{G}(H):=\left\{g \in G: \quad S^{H} g^{-1}=H\right\} \text {. }
$$

Proof: Since G is milprent, the bowen curial series satisfies,

$$
\left.G=G_{0} \geq G_{1} \geq \ldots . \geq G_{n}=1 e\right\}
$$

with $\left(G, G_{j}\right) \subset G_{j+1} . \& G_{j} \triangleleft G \not \forall_{j}$.
[HW5] If $N_{1}, N_{2} \triangleleft G *\left(G: N_{1}\right) \subset N_{2} \subset N_{1} \Rightarrow$ foal $H<G$ we have $N_{2} H \triangle N_{1} H$.
Since: $\left(G_{i} G_{j}\right) \subset G_{j+1} \subset G_{j}$ then $G_{j+1} H \triangleleft G_{j} H \quad \forall j$
We gt $G=G_{0} H \supseteq G_{1} H \supseteq \cdots \geq G_{n} H=H$.
Fix e k to be the largest index with $G_{k} H \supsetneqq G_{k+1} H=H$
Then $H \not G_{k} H$ and hence $N_{G} H \supset G_{k} H \neq H$ as we wanted.
\$2 Simplicity of A_{n} fr $n \geqslant 5$
Recall $A_{n}=$ soup of essen permutations.
It was deprived as the kernel of the sign amorphism $S_{n} \longrightarrow\{ \pm 1\}$
(This mop was anique defined by sign($(a b))=-1 \quad \forall a \neq b$.)
Examples $\left.A_{2}=3 e\right\}, \quad A_{3} \simeq \mathbb{Z} / 3 \mathbb{Z}=\langle(123)\rangle$

$$
A_{4}=\langle(123),(12)(34)\rangle
$$

Lemma 1: Fo $n \geqslant 3$: A_{n} is quaratid by 3 cycles.
Os: $(12)(34)=(12)(13)(13)(34)=(132)(341)$
Proof: Since $(a b c)=(a b)(b c)$ is even, we hose that $<\sigma$: σ is a 3-cyde $>\subseteq A_{n}$.

To finish, we must show that every even permutation is a product of 3 cycles. We do so by arguing $\sigma \in A_{n}$ is a product of an even number of trenspssitimes. We poop them in parts \& analyse the varies options:

$$
\begin{aligned}
& \text { - }(a c)(a c)=e \\
& -(a c)(a b)=(a b c) \\
& -(a b)(c d)=(a b c)(b c d)
\end{aligned}
$$

Lemma 2: Fr $n \geqslant 5$: all 3 -cycles in S_{n} are conjugate to exch other in A_{n}, ie if σ, σ^{\prime} are 3 -cycles, there exists $\sigma \in A_{n}$ with $\sigma \sigma \sigma^{-1}=\sigma^{\prime}$
Proof: Let $\left(a_{1} a_{2} a_{3}\right) \&\left(b_{1} b_{2} b_{3}\right)$ Le two 3-cycles. We know that $\exists \gamma \in S_{n}$ st $\gamma\left(a_{1} a_{2} a_{3}\right) \gamma^{-1}=\left(b_{1} b_{2} b_{3}\right)$ (Pick $\gamma \in S_{n}$ with $\gamma\left(a_{i}\right)=b_{i} \quad$ fr $i=1,2,3$) If γ is sen, there is withing to prove. If γ is odd, pick $c, d \notin\left\{b_{1}, b_{2}, b_{3}\right\}$ with $c \neq d \quad$ (they exist because $n \geqslant 5$) Then: $\underbrace{(c d) \gamma}_{\in A_{n}}\left(a_{1} a_{2} a_{3}\right) \underbrace{\gamma^{-1}(c d)}_{=((c d) \gamma)^{-1} \in A_{n}}=\left(b_{1} b_{2} b_{3}\right)$

Theorem 2: A_{n} is simple for $n \geqslant 5$.
Proof: Pick $K \triangleleft A_{n}$ with $K \neq$ Sid k. We will show that $k=A_{n}$ by finding a 3 -cycle in it. Commas will then imply

$$
\left.A_{n}=\langle\sigma: \sigma \text { is a s-cycle }\rangle \subset K \text { (because } K \Delta A_{n}\right)
$$ by (emma).

- Pick $\sigma \in K \backslash 3 e\}$ with $x^{\sigma}=\{x \in\{1, \cdots n\}: \sigma(x)=x\}$ has maximum cardinality.

Claim: σ is a 3 -cycle.
If/ Write σ as a purduct of disjoint cycles $\sigma=\left(a_{1}, a_{2}, a_{3} \ldots\right) \ldots$.
We analyze 2 cases
CASE 1 Assume σ has a cycle of length $\geqslant 3 \mathrm{im}$ its decompsritim. If $\sigma=\left(a_{1} a_{2} a_{3}\right)$ we are dime. Otherwise we can find a_{4}, a_{5} with

$$
\left\{\begin{array}{l}
-a_{4} \neq a_{5} \\
-a_{4}, a_{5} \notin\left\{a_{1}, a_{2}, a_{3}\right\} \\
-\sigma\left(a_{4}\right) \neq a_{4} \quad \& \quad \sigma_{\left(a_{5}\right)} \neq a_{5}
\end{array}\right.
$$

Let $\sigma=\left(a_{3}, a_{4}, a_{5}\right) \quad \& \quad \sigma^{\prime}=\underbrace{G \sigma \sigma^{-1}}_{\in K} \sigma^{-1} \in K$. Then:
(1) $x^{\sigma^{\prime}} \supset x^{\sigma}$
(2) $\left.a_{2} \in X^{\sigma^{\prime}}, \quad a_{2} \notin X^{\sigma}\right\} \Rightarrow\left|X^{\sigma^{\prime}}\right| \geqslant\left|X^{\sigma}\right| \mathrm{Cm}_{\mathrm{m}} t_{n}$!

Once: $\sigma^{\prime}\left(a_{2}\right)=6 \sigma \sigma^{-1} \sigma^{-1}\left(a_{2}\right)=\sigma \sigma \sigma^{-1}\left(a_{1}\right)=\sigma \sigma\left(a_{1}\right)=6\left(a_{2}\right)=a_{2}$ $\sigma\left(a_{2}\right)=a_{3} \neq a_{2}$.
It $\sigma(x)=x$, then $x \notin\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ by construction, so

$$
\sigma_{(x)}^{\prime}=\sigma \sigma \sigma^{-1} \sigma^{-1}(x)=\zeta \sigma \sigma^{-1}(x)=\zeta \sigma(x)=\zeta(x)=x
$$

CASE 2: All cycles in σ here length $\leqslant 2$.
Write $\sigma=(a b)(c d) \cdots$.... (we hose at lest 2 trenspsitives because $k \subset A_{n} \& \sigma \neq i d$.) Pick $k \notin 3 a, b, c d r$ (ok becouse $n \geq 5)$. Then $\sigma:=(c d k)$ \& $\sigma^{\prime}:=\zeta \sigma \sigma^{-1} \sigma^{-1} \in k$
satisfies :
$\left.\begin{array}{l}\text { (1) } x^{\sigma^{\prime}} \supset x^{\sigma},\{k\} \\ \text { (2) } a, b \in X^{\sigma}, a, b \notin x^{\sigma}\end{array}\right\} \Rightarrow\left|X^{\sigma^{\prime}}\right| \geqslant\left|x^{\sigma}\right| G_{m} t_{n}!$
Check: $\cdot \sigma^{\prime}(a)=6 \sigma \sigma^{-1} \sigma^{-1}(a)=6 \sigma \sigma^{-1}(b)=\sigma \sigma(b)=\zeta(a)=a$

- $\sigma^{\prime}(b)=b$ by symmitey
- $\sigma(a)=b \quad \sigma(b)=a \quad \Rightarrow \quad a, b \notin x^{\sigma}$
- Pich $x \neq k$ with $\sigma(x)=x$. Then, $x \notin\{a, b, c, d, k\}$ \& so $\sigma^{\prime}(x)=\zeta \sigma \sigma^{-1} \sigma^{-1}(x)=\sigma \sigma \sigma^{-1}(x)=\zeta \sigma(x)=\sigma(x)=x$.

