Lecture 14: Nilpotent apoups, Simplicity of An for nos Recall. Last time we defined nilpstent proups & characterize solvable gps \$1. Nilptent noups: . Lower central series $G = C'(G) \triangleleft C^{2}(G) \triangleleft \cdots \qquad \triangleleft C^{n}(G) \triangleleft C^{n+1}(G) \triangleleft \cdots$ where C'(G) = GDefinition: G is nilprent if I nzi such that Cⁿ(G)= 3et. Equivalently, & is a comprition series for G. $E_{\text{xamples}(I)}G = \mathbb{Z}_{6\mathbb{Z}}$, $C^{2}(G) = (G,G) = 1$ (G abelian) (2) $G = D_n$ $C^2(G) = \langle \varrho^2 \rangle$ $C^{3}(G) = (G, \langle e^{2} \rangle) = \langle [se^{i}, e^{2}] : i = 0, ..., n - i \rangle = \langle e^{4} \rangle$ $se^{i}e^{2j}(se^{i})^{-1}e^{-2j} = se^{2j}se^{-2j} = e^{-4j}$ $C^{4}(G) = (G, < \ell^{4} >) = < \ell^{8} >$ ¥m≥ı. By induction: $C^{m+1}(G) = \langle e^{2^m} \rangle$ <u>Include</u>: Dn is nilpstint it and may if n is a power of 2. Kemarles: & satisfies the following projecties: () $(G, C^{n}(G)) = C^{n+1}(G) \forall n C^{n+1}(G) \triangleleft C^{n}(G)$ (2) Cⁿ(G) is abelian Hn Cⁿ⁺¹(G) $(because (C^{n}(G) : C^{n}(G)) \subseteq (G, C^{n}(G)) = C^{n}(G) \checkmark)$

(3)
$$C^{2}(G) = (G, G) = D^{1}(G)$$

(4) $(C^{n}(G), C^{m}(G)) = C^{n+m}(G)$ (Exercise HWS)
 $\Rightarrow D^{2}(G) \subseteq C^{2}(G)$ for all $l \ge 0$.
37/ Tore for $l = 0$, $a l = 4$.
 $D^{2+1}(G) = (D^{2}(G), D^{2}(G)) \subseteq (C^{2}(G) \subseteq C^{2}(G) \subseteq C^{2}(G) \subseteq C^{2}(G) \subseteq C^{2}(G) \subseteq C^{2}(G) \subseteq C^{2}(G)$
(*and* Lary: Nilptent \Rightarrow Solvable
(*and* Lary: Nilptent \Rightarrow Solvable
(*and* Lary: Nilptent $(e_{3} D_{3} is solvable but not ailptent)$
Nilptent appropriate sen he characterized by having composition series
with exercise product gives, as we ded with solvable. This is the
content of the west theorem.
Theorem 1: G is milptent if and alg if it has a composition series
 $\Sigma: G = G_{0} \ge G_{1} \ge \cdots \ge G_{n} = 3et$
with $(i) q_{1}^{2}(G) = G_{1}/G_{1+1}$ is $j = 0, \cdots, n-1$.
Remark: $(e) \Rightarrow 0$ because $(G_{1}, G_{1}) \subset (G, G_{2}) \subseteq G_{2}$,
frees G_{1}/G_{1+1} to be abelian.
Shool if Than 1 (\Rightarrow) Take $G_{2} = C^{-1}(G)$ form lower central series.
 (\rightleftharpoons) It's enough to check the following
 $(\underline{Laim}: C^{3+1}(G) \subseteq G_{1}$ $H_{2} = 0, \cdots, n-1$ ($\Rightarrow C^{n+1}(G) \subseteq 1et$,
 $S_{0} \subset^{n+1}(G) \subseteq 4et$, $S_{0} \subset^{n+1}(G) \subseteq 1et$,
 $S_{0} \subset^{n+1}(G) \subseteq 4et$, $S_{0} \subset^{n+1}(G) \subseteq 1et$,
 $S_{0} \subset^{n+1}(G) \subseteq 4et$, $S_{0} \subset^{n+1}(G) \subseteq 1et$,
 $S_{0} \subset^{n+1}(G) \subseteq 4et$, $S_{0} \subseteq^{n+1}(G) \subseteq 1et$, $S_{0} \subseteq^{n+1}(G) =^{n+1}(G) \subseteq^{n+1}(G) \subseteq^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+1}(G) =^{n+$

Sworf: We only need to show (\ll). Consider T: $G \longrightarrow G/A$ (A $\lhd G$ because $A \subset Z(G)$) pick a with $C^{n}(G/A) = \frac{1}{2}e_{F}$ (laim: T($C^{k}(G)$) = $C^{k}(G/A)$ Vk

Proof: By induction on k .

•
$$\underline{k}_{=1}$$
, $\overline{\mathcal{K}}(G:G) = (\overline{\mathcal{K}}(G), \overline{\mathcal{K}}(G))$

• Inductive Step:
$$C^{k+1}(G) = (G : C^{k}(G))$$
 so
 $T(C^{k+1}(G)) = (TC(G) : TC(C^{n}(G)) = (G : C^{n+1}(G/A))$
 $T(C^{n+1}(G)) = (TC(C^{n}(G)) = C^{n+1}(G/A))$

Then,
$$TC(C^{n}(G)) \stackrel{(K)}{=} C^{n}(G/A) = \lambda e_{\xi} \stackrel{(K) \subset A}{\longrightarrow} C^{n}(G) \subset A$$

By $A \subset Z(G)$ so $C^{n+1}(G) = (G:A) = \lambda e_{\xi}$.

The last statement fails if A is not included in $\mathcal{Z}(G)$, ie $\mathfrak{A} \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \mathfrak{A}$ sets a G_1, G_3 milpotent $\neq > G_2$ is milpotent.

Example:
$$G_2 = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, d \in \mathbb{C}^{\times} \ b \in \mathbb{C} \right\}$$

 $G_2 \models G_1 = \left\{ \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix} : x \in \mathbb{C} \right\} \cong \mathbb{C}$
 $G_2 \models G_1 \times \mathbb{C}^{\times}$ (diagonal entries)
 $G_1 \approx G_2/G_1$ militant (see HW5)
 G_2 is solvable but not nilptent
 G_3 is induction on $k \ge 1$ with $[G] = p^k$.
 G_4 is induction of G_2 is solvable
 G_2 is solvable but not nilptent
 G_3 is solvable. Then by induction hypothesis: $Z(G)$ is milptent
 $A = \left\{ G_2(G) \right\} = p^{k-5}$ is solved in higher of G_3 is nilptent.
By Proposition \mathcal{O} , G is nilptent process are direct products
of p -groups. The proof of this fact is a homework exercise, and dynamics
 m the following:
Lemma: Let G be a nilptent proof $k \in H_2^{-1} = H_2^{-1}$.

Broof. Since G is nilptent, the lower antral series satisfies, $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = iei$ with (G,Gj) CGj+1. ~Gj a Vj. $[HW5] [FN, N_2 \lhd G \not\in (G:N_1) \subset N_2 \subset N_1 \implies \int \pi \, dl \, H < G$ where NZH IN, H. Since (G;Gj) CGj+1 CG; then Gj+1 H dGj H Vj We get $G = G_0 H \supseteq G_1 H \supseteq \cdots \supseteq G_n H = H$. Fix k to be the largest index with GKHZGK+1H=H Then $H \not\supseteq G_{k}H$ and hence $N_{G}H \supset G_{k}H \neq H$ as we wanted. \$2 Simplicity of Andrazs Recall An = group of even permutations. It was defined as the kernel of the sign moching Sn -> Itil (This map was anique defined by sign ((ab)) = -1 Hazb.) Exemples $A_2 = 3e_1$, $A_3 \simeq \frac{2}{3} = \frac{2}{3}$ = < (123)> $A_4 = \langle (123) \rangle (12)(34) >$ Lemma 1: For n=3: An is guaranted by 3 cycles. O_{65} : (12)(34) = (12)(13)(13)(34) = (132)(341)'Snoot: Since (abc) = (ab) (bc) is even, we have that

To finish, we must show that every even permutation is a product of scycles. We do so by arguing JEAn is a product of an even number of transpositions. We youp them in parts & analyze the various options:

. (ac)(ac) = c- (ac)(ab) = (abc)- (ab)(cd) = (abc)(bcd)

Lemma 2: For nzs: all 3-cycles in Sn dre curjugate to each other in An rie ; F T, T' are 3-cycles, there exists $Z \in A_n$ with $G T Z^{-1} T'$ \underline{Proof} : Let $(a, a_2, a_3) \ll (b, b_2, b_3)$ Letwo 3-cycles. We know that $\exists \delta \in S_n$ st $\delta(a, a_2, a_3) \delta^{-1} = (b, b_2, b_3)$ (fich $\delta \in S_n$ with $\delta(a_1) = b_1$ for i = 1, 2, 3) If δ is view, there is nothing to prove. If δ is odd, pick $c, d \notin B_{1, 52, 53}$ with $c \neq d$ (they exist because $n \ge 5$) Then: $(cd)\delta(a, a_2, a_3) \delta^{-1}(cd) = (b, b_2, b_3)$ $= (cd)\delta)^{-1} \in A_n$

- . J'(6) = 5 by symmetry
- $\operatorname{Rich}_{X \neq k}$ with $\nabla(X) = X$. Then, $x \notin 39,5,c,d,kf \ll so$ $\nabla'(X) = 6 \nabla 6^{-1} \nabla'(X) = 6 \nabla 6^{-1} \nabla(X) = 6 \nabla(X) = X$.