2 Polynmial Rings over R given R ring × miable, $R(x] = \{\sum_{j=0}^{N} a_j \times x^j a_j \in \mathbb{R} \ N \ge 0\}$ is a king : • Addition : componenturix (degree-by-degree) $\sum_{j=0}^{N} a_j X^j + \sum_{k=0}^{M} b_k X^k = \sum_{j=0}^{mex} (a_j+b_j) X^j$ where $a_j = 0$ for $N < j \leq max(N, M)$. • <u>Multiplication</u>: $(\sum_{j=0}^{n} a_j \times j)(\sum_{k=0}^{N} b_k \times k) = \sum_{l=0}^{n+N} \sum_{i+j=l}^{n+N} (a_i b_{l-i}) \times k$ with the understanding that az=0 Vi>M & bk=0 VK>N (this rule is imposed by distributive property & definition of +) Inductively $R[x_1, \dots, x_n] = R[x_1, \dots, x_{n-1}][x_n]$ wefficient ring deque $(X^{d}) = |d| = d_1 + \cdots + d_n$ § 2. Some important subtypes of rings: Let R be a ring. Det : Ris said to be <u>commutative</u> it ab=ba ta, beR. 2 R is said to be a division ring (IT skew-field) if R=R-308 (3) R is a field if it is a commutative, division ring. (3) R is an integral domain if R is commutative & $\forall a, b: ab=0 \implies a=0 \ \pi \ b=0.$ LIn general, if for a Rilos there is L=0 in R with ab=0 we say a is a zuro divisor Integral demain = commutation +]

Example:
$$Z_{nZ}$$
 is a commutative ring.
. It n is not a prime number, song $n=n, nz$, the residue
classes of $n, \ge n_Z$ in Z_{nZ} are great divisors.
. If n is prime, then Z_{nZ} is a field
 $\left(\frac{2}{nZ}\right)^{\times} = \frac{1}{2} \overline{m}$: $gcd(m, n)=1$?
. Why? Euclidean Algorithm gives $am+bn=1$ for some $q, b in Z$,
so $\overline{am} = \overline{I}$. (noready if $am \equiv 1 \mod n$, we have
 $n \mid am-1$ so $am-1 = n \ker fr nome \ker Z no am+n(-k)=1$
 $\stackrel{\mathcal{L}}{agcd(m, n)} = 1$ ($d(m, d(n) \Longrightarrow d(am+n(-k)-1) = 1$)

So a'b'-ab
$$\in \mathcal{A}$$
, maning a'b + \mathcal{A} = ab + \mathcal{A} , as we wanted.

Def: Let R, Rz be two rings. A map f: R, ->Rz is a Jummanorphism of rings if:

• f is a group homomorphism between $(R_{1,+,0}) \leq (R_{2,+,0})$ in $f(q_{1,+b_1}) = f(q_1) + f(b_1) \quad \forall q_{1,-b_1} \in \mathbb{R}$

ie
$$f(a,b,) = f(a,)f(b_1)$$
 & $f(1) = 1$
NOTATION: $F \in Hom_{Rings}(R_1, R_2)$
Obs: $f(0) = 0$ & $f(1) = 1$.
Example: $A \subset R$ ideal, $T : R \longrightarrow R/\alpha$ is ring hom.

Example:
$$\mathcal{A} \subset \mathcal{R}$$
 ideal, $\mathbf{T} : \mathcal{R} \longrightarrow \mathcal{R}/\mathcal{A}$ is ring have
Lemma: Let $h: \mathcal{R}_1 \longrightarrow \mathcal{R}_2$ be a ring homomorphism
Thun (i) $\mathcal{A} = \ker(F) \subset \mathcal{R}_1$ is an ideal
(ii) $\operatorname{Im}(F) \subset \mathcal{R}_2$ is a subtring

$$\frac{y_{100}}{(i)} : (i) \times EQL, r, r \in \mathbb{R}$$

$$f_{1}(r \times) = f_{1}(r) f_{1}(x) = f_{1}(r) \cdot 0 = 0$$

$$F_{1}(r \times) = f_{1}(r) = 0 \quad f_{1}(r) = 0$$

$$F_{1}(r) = F_{1}(r) = 0 \quad f_{1}(r) = 0$$

$$F_{2}(r) = 0 \quad f_{1}(r) = 0$$

$$F_{2}(r) = 0 \quad f_{1}(r) = 0$$

(ii)
$$1=f(1) \in Im(f)$$

 $0=f(0) \in Im(f)$ $\Delta Im(f)$ is closed under $\cdot \geq$
 $1 \text{ is a subgroup of } (R_2, t, 0).$

$$\frac{\text{listent numerics}}{\text{listent }} \cdot \text{ from } F: \mathbb{R}, \rightarrow \mathbb{R}_{2} \text{ and homomorphism}}$$

$$() \quad F^{1}(\mathcal{R}_{2}) \subset \mathbb{R}_{1} \quad \text{ is an (dual of }\mathbb{R}_{1}, from using \mathcal{R}_{2} \subset \mathbb{R}_{2}, \text{ for } \mathbb{R}_{1}, \text{ for } \mathbb{R}_{2} \in \mathcal{R}_{2}, \text{ for } \mathbb{R}_{2}, \text{ for } \mathbb{R}_{2} \in \mathcal{R}_{2}, \text{ for } \mathbb{R}_{2}, \text{ for } \mathbb{R}_{2}, \text{ for } \mathbb{R}_{2} \in \mathcal{R}_{2}, \text{ for } \mathbb{R}_{2}, \mathbb$$

Third Iso Thirtem: Let K be a ring, SCK a mitring
&
$$\mathcal{R} \subset \mathbb{R}$$
 be an ideal. Thun,
(i) SNR is an ideal in S
(ii) StR is a subring of \mathbb{R} containing \mathcal{R} . , \mathcal{R} is an ideal
(iii) StR is a subring of \mathbb{R} containing \mathcal{R} . , \mathcal{R} is an ideal
of StR .
Furthermore StR \sim S as rings
SNR $f = 100i$
 \mathbb{E}_{i} $f = 100i$
 \mathbb{E}_{i} \mathbb{E}_{i}