Lecture 16: Algebna Pideals; modules
Pecall : Last time wedefimed rimps, left/right / Two-sided ideab, sabrings 2 momumirphisms of rings.
$R^{x}=U(R)=$ meltiplicatise poup of insentible elements (runits of R)
Fix a ring $R \& \alpha \subset R$ an ided (ie $A \subset R$ subgoup (ω / t) so that $\forall r \in R, a \in \mathbb{C}: r \cdot a$ \& a.r $\in \mathbb{C})$.
Nse: $a \cap R^{x} \neq \varnothing \Rightarrow a=R=(1)$ (called the mit ideal)
31. Algebra of iduals:

Let $f(R)=$ set of all idrabs of R.

- given $a, b \in$ of (R), define:
(1) $a+b:=\{a+b: a \in a, b \in b\}$
(2) $a \cdot b:=\left\{\sum_{i=1}^{N} a_{i} b_{i}\right.$ where $N \geqslant 0$ is arbithary, $\left.\begin{array}{l}a_{1}, \ldots, a_{N} \in a \\ b_{1}, \ldots, b_{N} \in b\end{array}\right\}$

Easy check: $a+b$ and $a \cdot b$ are again ideals of R.

- $(f(R),+,(0))$ is an additive monoid.
- $(f(R), \cdot,(1))$ is a multiplicatise monoid.

32. Ideah yeurated by sets:

Let R be a ring and $a_{1}, \ldots, a_{n} \in R$.
Def. The left-idical generated by a_{1}, \ldots, a_{n} is $R a_{1}+\cdots+R a_{n}$

$$
\begin{aligned}
& =:\left(a_{1}, \ldots, a_{n}\right) \\
& \therefore s_{1} R+\ldots+a_{n} R \\
& =:\left(a_{1}, \ldots, a_{n}\right)_{R} .
\end{aligned}
$$

The right-idual
The ideal penerated by a_{1}, \ldots, a_{n} is $R a_{1} R+\cdots+R a_{n} R$

$$
=:\left(a_{1}, \ldots, a_{n}\right) .
$$

- More generally, fr any subset $x \subset R$, the ideal generated by X
is : $(x)=\bigcap_{a \in g(R)} \alpha$
$x \subset R$
Similarly, we have

$$
(X)_{R}=\bigcap_{\substack{\alpha \subset R \\ \text { right-idel } \\ x \leq \mu}} \alpha \quad \& \underbrace{}_{R}(X)=\bigcap_{\substack{\mu \subset R \\ l e f t-i d u d \\ x \leq \mu}} \alpha
$$

[Lecture 15: These intersections always give left/right/two-sided ideals.]
Definition: An ideal $a \subset R$ is said to be finitely generated if $\exists a_{1}, \ldots, a_{m} \in \alpha$ such that $\alpha=\left(a_{1}, \ldots, a_{m}\right)$

- An ideal α is principal if $\alpha=(a)=R a R$ frise $a \in R$ - We say that R is a principal ideal ring if ever ideal $\Omega \subset R$ is principal.
$\frac{\text { Main examples: } \mathbb{Z}}{\mathbb{Z}}$ is a principal ideal ring (actually domain)

Nn-exanfle : $\mathbb{Z}[x] \quad \Omega=(2, x)$ is not principal.
Example Ideals in $\mathbb{Z} / \omega \mathbb{Z}$ By $z^{\text {nh }}$ Iso Theorem.
Ideals in $\mathbb{Z} / N \mathbb{Z} \longleftrightarrow$ ideals in \mathbb{Z} cont aiming N $=\{(d): d$ divides $N\}$
m The analogue of 'divisibility of N by d ' is the containment ' $(N) \subset(d)$.
\$3 Characteristic of a ring:
Remark: Let $f: R_{1} \rightarrow R_{2}$ be a homiphism of rips \& $a_{2} \in \mathscr{g}\left(R_{2}\right)$

$$
\operatorname{ker}(g)=f^{-1}\left(a_{2}\right)=: a_{1}
$$

and hence $R_{1 / a_{1}} \longrightarrow R_{2} / a_{2}$

Let R be a ring. We have a natural ring homomorphism:

$$
\begin{aligned}
\varphi: \mathbb{Z} & \longmapsto R \\
m & \longmapsto m \cdot 1_{R}=\underbrace{1_{R}+\cdots+1_{R}}_{m \text { limes }} \quad \text { fr } m \geqslant 0
\end{aligned}
$$

and $\varphi(-n)=-\varphi(n)$ for $n \geqslant 0$.
$\operatorname{Ker}(\varphi) \subset \mathbb{Z}$ is an ideal. Since $I_{R} \neq 0_{R}$, then $\operatorname{Kec}(\varphi) \neq \mathbb{Z}$ Thus $\operatorname{Ker}(\varphi)=(N)$ for some $N \geqslant 0, N \neq 1$.

- If $N=0$: we say the characteristic of R is zero $[\mathbb{Z}$ is the characteristic sebring of R]
- If $N>0: \quad \underset{N}{\mathbb{Z}} \longrightarrow \longrightarrow R$ is the characteristic subring

Obs: ILR is a domain, then char $(R)=0$ r a prime number. (because $\mathbb{Z} \mathbb{Z}$ cannot have zero divisors since R hos woe)
\$4. Modules : Definitions a examples
In what follows, we set $R=$ an arbitrary ring
$A=$ a commutatiere ring
Def: Left and right modules res R

- A left (resp right) module M (resp. N) seer R is an abilion group M (resp. N) together with a bilinear map

$$
R \times M \rightarrow M \quad(\text { resp } N \times R \rightarrow N)
$$

such that $1 . m=m$ (resp

$$
(a \cdot b)-m=a \cdot(b \cdot m)
$$

$$
\begin{array}{ll}
n \cdot 1=n & \forall a, b \in R \\
n(a \cdot b)=(n \cdot a) \cdot b & \begin{array}{l}
m \in M \\
n \in N
\end{array}
\end{array}
$$

Bilinear mans linear m each comment:

$$
(a+b, m) \longmapsto(a+b) \cdot m=(a \cdot m)+(b \cdot m)
$$

$$
\left(a, m+m^{\prime}\right) \longmapsto a \cdot\left(m+m^{\prime}\right)=a \cdot m+a \cdot m^{\prime} .
$$

Ne: $(-a) \cdot m=-(a \cdot m)=a \cdot(-m)$ from bilinearity

$$
0_{R} \cdot m=0_{M} \text { fr all } m \in M
$$

Remark: A mare economical way of defining left/ right morlules stu R would be to hare an abclian group M (rap. N) and a ring how

$$
\lambda: R \longrightarrow \operatorname{End}_{g p}(M) \quad\left(\mathrm{mpp}: R^{o p} \longrightarrow \operatorname{End}_{g p}(N)\right)
$$

same as R as an abilion ip $a . b$ in $R^{\text {of }}=b a$ in R
where

$$
\left.\begin{array}{rl}
\lambda(r): M & M \quad\left(\mu_{s p} \quad \rho(\lambda): N\right. \\
m & \longrightarrow N \\
n & \longmapsto n \cdot r
\end{array}\right)
$$

Obs: When the ring is comonutatise, left = right, so we singly ese the term module.
Examples: (1) $a \subset R$ left ideal is a left module /R night \qquad right
(2) Every abclian group is a morlule over \mathbb{Z}

$$
(n \cdot m=\underbrace{m+\cdots+m}_{n \text { limes }} \text { f } n n \geq 0 \quad \text { r } \quad n \cdot m=(-n) \cdot(-m))
$$

(3) $\forall n \geqslant 1: M=R^{n} \quad\left(\operatorname{mesp} N=R^{n}\right)$ is a left t resp. right) $\underset{\operatorname{mor} R}{\operatorname{mon} R}$.
§ 5 Homanifhisms of morlules:
Let M_{1} \& M_{2} be two left R-modules. An R-linear map (releft R-module homomirpluisn) is a homounefhison of abclian soups
$f: M_{1} \longrightarrow M_{2}$ such that $f\left(r \cdot m_{1}\right)=r\left(m_{1}\right) \quad \forall r \in R, m_{1} \in M_{1}$
Write $f \in \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right)=$ set of all R-linear maps $M_{1} \rightarrow M_{2}$.

Obs: Home $\left(M_{1}, M_{2}\right)$ has a structure of an abelian op $f, g \in \operatorname{Hm}_{R}\left(M_{1}, M_{2}\right)$, then $f+g \in \operatorname{Homg}\left(M_{1}, M_{2}\right)$ via $(f+g)_{\left(m_{1}\right)}=f\left(m_{1}\right)+g\left(m_{1}\right)=f\left(m_{1}\right)+f\left(m_{1}\right)=:(g+f)_{\left(m_{1}\right)}$

- We have the usual notions of sub modules, submurdules generated by ats, quotient modules, kernels \& images. In particular, we have the 3 is murfthisen Thins (HWG)
Eg: $F: M_{1} \longrightarrow M_{2} \leadsto$
§6. 8 inch Sum of modules:

$$
M_{1} / \operatorname{kerf} \xrightarrow[\vec{f}]{\underline{n}} \operatorname{Imf}
$$

Def Let I be a set and $\left(M_{i}\right)_{i \in I}$ a set of (lift) R-morcules.

$$
\bigoplus_{i \in I} M_{i}=\left\{\left(x_{i}\right)_{i \in I:} \quad x_{i} \in M_{i} \forall i \quad x_{i} \quad \text { fr all but finitely mary } i \in I\right\}
$$

is again a (left) R-module (with componenturise operations:

$$
\left\{\begin{aligned}
\left(x_{i}\right)_{i \in I}+\left(y_{i}\right)_{i \in I} & =\left(x_{i}+y_{i}\right)_{i \in I} \\
r \cdot\left(x_{i}\right)_{i \in I} & =\left(r x_{i}\right)_{i \in I}
\end{aligned}\right.
$$

Universal Property:
Given a left R-module N and $\left\{f_{i} \in H_{m_{R}}\left(M_{i}, N\right)\right\}_{i \in I}$, there exists a unique R-leman map

$$
\begin{aligned}
& f: \bigoplus_{i \in I} M_{i} \longrightarrow N \\
& \left(x_{i}\right)_{i \in I} \longmapsto \sum_{i \in I} f\left(x_{i}\right) \text { (finite sem by definition of } \oplus_{i \in I} M_{i} \text {) } \\
& \text { Obs: } M_{j} \stackrel{\varphi_{j}}{\longrightarrow} \oplus_{i \in I} \Pi_{i} \text { lines } f_{0} \varphi_{j}=f_{j} \xrightarrow[{\Pi_{j} \xrightarrow{\oplus} \xrightarrow{\mu_{j}}} N]{ }
\end{aligned}
$$

Special case: M a left R-module, $M_{1}, M_{2} \subset M$ submordules
Prop: $M \leftarrow \sim M_{1} \oplus M_{2}$ if \& may if $. M_{1}+M_{2}=M$

- $\left.M_{1} \cap M_{2}=30\right\}$

Bod: As $M_{1} \longrightarrow M$
are R-leruar, we get by the unisusal

$$
\Pi_{2} \hookrightarrow M
$$

property $M_{1} \oplus M_{2} \xrightarrow{G} M$

$$
\left(m_{1}, m_{2}\right) \longmapsto m_{1}+m_{2}
$$

- Image of $f=$ submodule of M generated by $M_{1} \& M_{2}$
- Kernel of $f=\left\{(x,-x): x \in M, \cap M_{2}\right\}$

Thus, f is an isomorphism of $M=M_{1}+M_{2} \& M_{1} \cap M_{2}=\{0\}$.
Exercise: Generalize to $\left\{M_{i} \longrightarrow M\right\}_{i \in I}$ that is:
$\bigoplus_{i \in I} M_{i} \longrightarrow M$ is an isomorphism of
(1) $M=\sum_{i \in I} M_{i} \quad$ (subnowade generated by $\left\{M_{i}\right\}_{i \in I}$)
(2) $M_{i} \cap \sum_{\substack{j \in I \\ j \neq i}} M_{j}=0 \quad \forall i \in I$
§7. Short exact sequences:
Def: If M_{1}, M_{2}, M_{3} are thee left R-modules, and $M_{1} \xrightarrow{f} M_{2} \stackrel{\leftrightarrow}{\longrightarrow} M_{3}$ ane R-linear maps, we say this sepenence is exact $\left(\right.$ at $\left.M_{2}\right)$ if Image of $f=$ Kernel of g

Af 2: $0 \longrightarrow M_{1} \xrightarrow{f} M_{2} \xrightarrow{s} M_{3} \longrightarrow 0$ s.e.s mas of injectire, g surjectiere

$$
\operatorname{Im}(f)=\operatorname{Ker}(g)
$$

Def 3: A short exact sequence $0 \rightarrow M_{1} \xrightarrow{t} M_{2} \xrightarrow{g} M_{3} \rightarrow 0$ is Trial if we have an R-fenian isomorphism

$$
\begin{aligned}
& M_{1} \oplus M_{3} \xrightarrow{\eta} M_{2} \text { st : } \\
& 0 \longrightarrow M_{1} \xrightarrow{\hbar} M_{2} \xrightarrow{q} M_{3} \longrightarrow 0 \\
& 0 \longrightarrow \Pi_{0} \longrightarrow M_{1} c i=M_{1} \oplus M_{3} \xrightarrow{\pi_{2}} M_{3} \longrightarrow 0
\end{aligned}
$$

Proposition: A short exact seperence $0 \rightarrow M_{1} \xrightarrow{r} M_{2} \xrightarrow{g} \Pi_{3} \rightarrow 0$ is tincal if and only if $\exists R$-lima s: $M_{3} \longrightarrow M_{2}$ st

$$
g o s=i d_{M_{3}} \quad(\exists \text { section })
$$

Proof: (\Rightarrow) Take $j: M_{3} \longrightarrow M_{1} \oplus M_{3}$ as the usual inclusion and define s: $M_{3} \longrightarrow M_{2}$ as $\eta \circ j$.

$$
\begin{aligned}
\left(\Leftarrow \eta_{1} \oplus M_{1} \oplus M_{3}\right. & \longmapsto M_{2} \quad \text { is } R \text {-liner } \\
(x, y) & \longmapsto f_{(x)}+S(y)
\end{aligned}
$$

and it makes the diagram commute
Excise: Verify that η is an is orphism.
38. Dinct Product:

Again, if I is a set and $\left\{M_{i}\right\}_{i \in I}$ is a collection of left R-nodules, the direct product $\prod_{i \in I} M_{i}$ is defined as $\prod_{i \in I} M_{i}=\left\{\left(x_{i}\right)_{i \in I}\right.$ where $\left.x_{i} \in M_{i} \forall i\right\}$
(Note: No finiteness condition!)

Remark: Fr I finite $\underset{i \in S}{ } M_{i} \xrightarrow{\sim} \prod_{i \in I} M_{i}$ as eft R-modules. Fr general I, they are different.

Universal Property_ - Given a left R-module N and R-limen maps $f_{i}: N \longrightarrow M_{i}$, there exists a unique $\operatorname{map} N \xrightarrow{G} \prod_{i \in I} M_{i}$

This will wot be $n \longmapsto\left(f_{i(n)}\right)_{i \in I} \longleftarrow \begin{aligned} & \text { allowed for dict } \\ & \text { cums unless } I \text { is finite }\end{aligned}$

Furthermore $\pi_{i}: \prod_{i \in I} M_{i} \longrightarrow M_{i}$ is the projection of the $i^{\text {th }}$ term, we have

