Lecture 17: Chinese Remainder Thin, prime and maximal ideals \$1. I deals in a commutative ring: Fix a commutation ring R. ICR is an ideal if it is a subgroup of (R,+,0) & RIRCI $a, b \in J(R)$ (ideals r(R)) $\Rightarrow \begin{cases} \hat{\alpha} + b = (\alpha + b : \alpha \in \alpha, b \in b) \in \mathcal{J}(R) \\ \hat{\alpha} \cdot b = \{ \sum_{i=1}^{N} \alpha_i b_i : \alpha_i \in \alpha, b_i \in b, N \in \mathcal{J}_{>,i} \} \in \mathcal{J}(R) \end{cases}$ The arithmetic of natural numbers has its analogue in the set of ideals of R. $(hz Z: n|m \implies (m) \le (u))$ Dinsibility ____ Inclusion Greatest ammin diresor - Sum l(n)+(m) = (gcd(n, m)))Least common multiple a Intersection $((n)\cap(m) = (lcm(n,m)))$ Multiplication _____ Product $((n) \cdot (m) = (nm))$ With this dictionary in mind, Def. We say two ideals or, b C R are coprime if or+b=R. Similarly, we write $\Gamma_1 \equiv \Gamma_2 \pmod{\alpha}$ if $\Gamma_1 - \Gamma_2 \in \partial C$, that is Chinese Remainder Theorem (Sun Tzee) Let $\mathcal{O}_{i_1}, \ldots, \mathcal{O}_{n}$ be ideals of \mathbb{R} , pairwise contrinue $(\mathcal{O}_{i_1}^{i_1} + \mathcal{O}_{j_2}^{i_3} = \mathbb{R})$ $\forall i \neq j$ Then, for any XI,..., XNER, JXER such that $X \equiv X_i \pmod{\pi_i}$ In reisn

Proof: Ix/e will need the following fact (easy to renify): Claim 1: tr, ..., br CR ideals => The C Obi. Next, we sketch the proof of CRT: Main idea: Find y, ..., yn ER such that frall i=1, ..., n y; = 1 mod die & y; = 0 mod dij 4j≠i If we succeed, we set $X = X_1 y_1 + X_2 y_2 + \dots + X_n y_n \in$ conclude x = x; mod x; preach i. (arithmetic n R/oc;) Case n=2: $R = \partial (+\partial L_2 \implies 1 = 9, +92$ for some $q \in \partial L_1$ Take $y_1 = a_2 & y_2 = a_1$. [thech y = az E O(z => y, = 0 mod o(z / $y_1 = i - \alpha_1 \implies i - y_1 \in \mathcal{H}_1$, ie $y_1 \equiv 1 \mod \mathcal{H}_1$ <u>general case</u>: Since $R = \alpha_1 + \beta_2$; $2 \le j \le n$, then $1 = a_{1}^{(j)} + a_{j} + a_{j} = n a_{1}^{(j)} \in \mathcal{X}, \quad s = a_{j} \in \mathcal{X}_{j}$ $\Rightarrow I = \prod_{j=2}^{n} I = \prod_{j=2}^{n} (a_{i}^{(j)} + a_{j}^{*}) = \prod_{j=2}^{n} a_{j}^{*} + \sum_{j=2}^{n} a_{i}^{(j)} \prod_{\substack{i=1 \ i=1 \ i=1$ $y_1 \equiv 1$ mod \mathcal{X}_1 & $y_1 \in \prod_{j=2}^{\infty} \partial t_j \subset \bigcap_{j=2}^{\infty} \partial t_j$. That is y, = 1 miel dy & y, = 0 mod dy Hj=2,...n. Repeating this argument for each OCi, we get yi= { mod OCi to sti

Carollary 1: R
$$\longrightarrow$$
 TT $\mathcal{P}_{\mathcal{X}_{i}}$ if $\mathcal{X}_{n}, \ldots, \mathcal{X}_{n}$ are
pointer infinite ideal
 \mathcal{P}_{i} is a ring homomorphism.
 f is a commutative ring.
 f is a proper ideal $\mathcal{P} \subseteq \mathbb{R}$ is a prime ideal if fr
 $M \subseteq \mathcal{R} \subseteq \mathbb{R}$, \mathcal{R} is a maximual ideal if
 $M \subseteq \mathcal{R} \subseteq \mathbb{R}$, \mathcal{R} is a maximual ideal if
 $M \subseteq \mathcal{R} \subseteq \mathbb{R}$, \mathcal{R} is a maximual ideal if
 $M \subseteq \mathcal{R} \subseteq \mathbb{R}$, \mathcal{R} ideal $\Rightarrow \mathcal{R} = \mathbb{R}$.
 f approxime 1: Maximal ideals exist.
 f is partially reduced by inclusion

Consider a chain (= a totally relived subset of g) $(a_i)_{i\in I}$ where $a_i \subseteq a_j$ if $i \in j$. Define $\mathcal{X} = \bigcup_{i \in I} \mathcal{X}_i = \sup_{i \in I} (\alpha_i)$ $(laim: X \in J)$ SF/. a, bex, then Flst a, bear (962:000 seaj cal = attexe ca R=max2 i, j{) . 0 E K · a E &, r E R => F l st a E & => raE & So & is an ideal . It is proper since if It is if UIti. In conclusion: every choin in I has a supremum in J. By Zorn's Lemma, there are maximal elements in J Crollary 2: Let & Q R be a proper ideal. Then, there exists a maximal ideal M of Z containing Q. Proof Use the Proposition for R'=R/a & check that meximal ideals of R' correspond to maximal ideals of R antaining or. This is true by the 2nd Ismorphism Theorem. . Next we characterize prime ideals: Proportine: 8 5 R ideal is prime (R/8 is an integral dimain

Bud: 8 is prime (
$$\Rightarrow$$
 ab \in 8 implies $a \in 8$ it $b \in 8$.
(\Rightarrow $T_{(a)}$ $T_{(b)} = 0$ in R/g implies $T_{(a)} = 0$ or $T_{(b)} = 0$
(Here $T : R \to R/g$).
(\Rightarrow R/g is an integral domain.
Lemma: A commutative ring R is a field if early if (0) a R
cut the only ideals in R
 $3f/=)I \in \mathcal{J}(R)$ $I \neq (0)$, Pick $x \in I > 30t$ then $\exists y$ st
 $xy = 1$ so $I = R$.
(\equiv) Rick $x \in R > 30t$ a consider $I = (x)$ ideal. Then
 $I = R \ni 1$, meaning $\exists y \in R$ with $1 = yx$ so $x \in R^*$.
Proprietion \exists : $M \subseteq R$ ideal is maximal (\Rightarrow B/m is a field
 $3f/R/R$ is a field (\Rightarrow (o) a R/m are the only
ideals in R/m
Since \exists ideals in R/α $\exists = \frac{1-t_{0-1}}{2}$ ideals in R containing
 $M \subseteq M$ and R (\Rightarrow $M \subseteq R$ is a maximal ideal. D
(or allows an integral domains.)

Examples:
$$R = Z$$
 $f(0)$, $(p) : p \in Z_{22}$ prime t are all the
prime ideals.
(0) is prime but not maximal
(p) is maximal for every $p \ge 2$ prime.
Parpointing 4: Let $h: A \longrightarrow B$ be a tring homomorphism, where A, B
are commutative trings. Let $q \ne B$ be a prime ideal.
Then $P = f'(q) \rightleftharpoons A$ is a prime ideal.
A The statiment fails for maximal ideals!
 $E_X: Z \subseteq S \otimes Q$, $q=(0)$ is the only maximal ideal,
but $F'(0)=(0)$ is not maximal in Z.
Proof: We know that $F'(q)$ is an ideal of A (becture is)
given $q \ge A$ with $q \le B$, we used to show as $B = b \le B$.
But $f(a) = f(a) f(b) \in Q \implies h(a) \in Q = f(b) \in Q$.
Hence, $a \in B$ or $b \in B$.
Fix R commutative tring
Theorem: Fix B_1, \ldots, B_n prime ideals of R a let $A \subset R$
be an ideal with $A \subseteq O_{\frac{1}{2}}$.
Prime $j = 1, \ldots, n$ with $A \subseteq O_{\frac{1}{2}}$.
Prime $j = 1, \ldots, n$ with $A \subseteq O_{\frac{1}{2}}$.
But we also the contrapositive:
 $X \notin B_1$: $V = 1, \ldots, n = S \notin V$.
We wave by induction on n

The assertion is true for n=1.
• Assume n>1 a that the assertion has been recibied for non.
Thus for i e i i, ..., n's we have:

$$\alpha \neq \beta_j$$
 for j e i, ..., n's i' i' => $\alpha \notin \bigcup \beta_j$.
That is, we can find a i e α with a i $\notin \beta_j$ $\forall j \neq i$.
Now, if a i $\notin \beta_j$ for some i, we are done none a i $\notin \bigcup \beta_j$.
On the contrary, if a i e β_i $\forall i = 1, ..., n$, we consider the
element $\alpha = \sum_{l=1}^{n} \alpha_l \cdots \alpha_{k-1} \alpha_{k+1} \cdots \alpha_n \in \alpha$

For each
$$i = 1, ..., n$$
 every summand of ∂t , except $a_1 \dots a_{i-1}^n a_{i+1}^n a_n$
lies in \mathcal{B}_i (as $a_i \in \mathcal{B}_i$)
Since $a_1 \dots a_{i-1}^n a_{i+1} \dots a_n \notin \mathcal{B}_i$ as none of its factors are in \mathcal{B}_i
then we conclude $a \notin \mathcal{B}_i$ $\forall i=1,...,n$, which is a contradiction.

Thurm 2: Let
$$\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$$
 be ideals of \mathbb{R} (commutative)
and $\mathcal{B} \subseteq \mathbb{R}$ be a prime ideal.
If $\bigcap_{j=1}^{n} \mathcal{A}_{j} \subseteq \mathcal{B}$, then there exists $l = 1, \ldots, n$ with $\mathcal{A}_{l} \subseteq \mathcal{B}_{l}$.
 $\underbrace{P_{noof}}_{j=1}^{n}$ We will show: $\mathcal{A}_{l} \notin \mathcal{B}$ $\forall l \Rightarrow \bigcap_{l=1}^{n} \mathcal{A}_{l} \notin \mathcal{B}$
By hypothesis, we have $a_{l} \in \mathcal{A}_{l} \circ \mathcal{B}$ $\forall l$.
Take $a = a_{1} \cdots a_{n}$.
 $a \in \mathcal{A}_{l} \notin \mathcal{H}_{l}$.
 $a \notin \mathcal{B}_{l}$ (\mathcal{B} is prime) $\Big\} \Longrightarrow \bigcap_{l=1}^{n} \mathcal{A}_{l} \notin \mathcal{B}$.

To prove the statement for the equaties, we argue as follows
If
$$\hat{j}_{j}$$
, $\Re_{j} = \vartheta$, we know $\chi_{\ell} \subseteq \vartheta$ for some ℓ .
Consumely, $\vartheta = \hat{j}_{j}$, $\chi_{j} \subseteq \chi_{\ell}$, so $\vartheta = \chi_{\ell}$. \Box