Lecture 17.: Chinese Remainder Thu, prime and maximal ideals
51. Ideals in a commutates ring:

Fix a commutates ring $R . I \subset R$ is an ididel if it is a subgroup of $(R,+0)$ \& $R I R \subset I$
$a, b \in f(R)$ (ideals $\mid R$)

$$
\Rightarrow\left\{\begin{array}{l}
a+b=(a+b: a \in a, b \in b) \in \mathcal{G}(R) \\
\left.a \cdot b=\left\{\sum_{i=1}^{N} a_{i} b_{i} \quad a_{i} \in \dot{x}, b_{i} \in b, N \in \mathbb{Z} \geqslant 1\right)\right\} \in \mathcal{I}(R)
\end{array}\right.
$$

The arithmetic of natural numbers has its analogue in the set of ideals of R.
Divisibility \longleftrightarrow Indusion $($ for $\mathbb{Z}: n / m \Leftrightarrow(m) \leq(m))$
Greatest ammundivis $\leftrightarrows \leftrightarrow$ Sum $\quad((n)+(m)=(\operatorname{gcd}(n, m)))$
Least common multiple \leftrightarrow Intersection $((n) \cap(m)=(\operatorname{lcm}(n, m)))$
Multiplication \longleftrightarrow Product $\quad((n) \cdot(m)=(n m))$
With this dictismaly in mind,
Def: We say two ideals $a, b \subset R$ are copreime if $x+b=R$.

- Similarly, we with $r_{1} \equiv r_{2}($ mad $x)$ if $r_{1}-r_{2} \in \mathscr{R}$, that is

$$
\pi: R \rightarrow R / x \text { sines } \pi\left(r_{1}\right)=\pi\left(r_{2}\right)
$$

Chinese Remainder Thorium (Sun $T_{z e}$)
Let x_{1}, \ldots, x_{n} be ideals of R, paimise opfrime $\left(x_{i}+x_{j}=R\right)$
Then, for any $x_{1}, \ldots, x_{n} \in R, \exists x \in R$ such that $x \equiv x_{i} \quad\left(\bmod x_{i}\right)$ fr $1 \leq i \leq n$

Proof: Ix /e will need the following fact (easy to reify):
Claim 1: $f_{1}, \ldots, b_{r} \subset R$ ideals $\Rightarrow \prod_{i=1}^{c} b_{i} \subset \bigcap_{i=1}^{n} b_{i}$.
Nest, we sketch the prod of CRT:
Main idea: Find $y_{1}, \ldots, y_{n} \in R$ suck that fr all $i=1, \ldots, n$ $y_{i} \equiv 1$ mod x_{i} \& $y_{i} \equiv 0$ and $r_{j} \forall j \neq i$
If we succeed, we ne $x=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \&$ conclude $x \equiv x_{i}$ mod x_{i} fo each i. (arithmetic in R / a_{i})
Case $n=2: R=x_{1}+x_{2} \Rightarrow 1=a_{1}+a_{2}$ fr sine $a_{i} \in x_{i}$
Tale $y_{1}=a_{2} \& \quad y_{2}=a_{1}$.
[Check $y_{1}=a_{2} \in x_{2} \Rightarrow y_{1} \equiv 0$ mod x_{2}

$$
\left.y_{1}=1-a_{1} \Rightarrow 1-y_{1} \in x_{1} \text {, ie } y_{1} \equiv 1 \bmod x_{1} x\right]
$$

Geueralcase: Since $R=a_{1}+r_{j} \quad 2 \leqslant j \leqslant n$, then

$$
\begin{aligned}
1 & =a_{1}^{(j)}+a_{j} \quad 1 \cap a_{1}^{(j)} \in a_{1} \& a_{j} \in \pi_{j} \\
\Rightarrow 1 & =\prod_{j=2}^{n} 1=\prod_{j=2}^{n}\left(a_{1}^{(j)}+a_{-j}\right)=\underbrace{\prod_{j=2}^{n} a_{j}}_{\prod_{j=2}^{n} a_{j}} \underbrace{\in R}_{\substack{\sum_{j=2}^{n} a_{1}(j) \\
a_{1} \\
\prod_{k \neq j}\left(a_{1}^{(k)}+a_{k}\right)}}
\end{aligned}
$$

So $x_{1} \& \quad b=\prod_{j=2}^{n} x_{j}$ are coprime ideals.
By the $n=2$ case, we can find $y, \in R$ st.

$$
y_{1} \equiv 1 \text { mad } x_{1} \& y_{1} \in \prod_{j=2}^{n} x_{j} \subset \bigcap_{j=2}^{n} x_{j}
$$

That is $y_{1} \equiv 1$ mad $x_{1} \& y_{1} \equiv 0 \quad \operatorname{mard} x_{j} \quad \forall j=2, \ldots n$. Repeating this argument ir each ∂_{i}, we set $y_{i}=\left\{\begin{array}{l}11 \text { mol } x_{i} \\ 0 \text { mod } x_{j} .\end{array}\right.$

Corollary 1:

$$
\frac{R}{\bigcap_{i=1}^{n} x_{i}} \xrightarrow{\sim} \prod_{i=1}^{n} B / a_{i}
$$

PF/ Let $R \xrightarrow{F} R / x_{1} \times \ldots \times R / x_{n}$
if x_{n}, \ldots, x_{n} ar painuix whine ideds of R ((mminutatione)

$$
\text { pr } \pi_{i}: R \rightarrow R / x_{i}
$$

$$
x \longmapsto\left(\pi_{1}(x), \ldots, \pi_{n}(x)\right)
$$

-f is a ring homomorphism.

- f is suyectix by CRT $\left(x_{1}, \ldots, x_{n}\right.$ with given

$$
\left.\pi_{1}\left(x_{1}\right), \ldots, \pi_{n}\left(x_{n}\right)\right)
$$

- $\operatorname{Kec} f=\bigcap_{i=1}^{n} \mathscr{R}_{i}$

So by the $1^{\text {st }}$ Iso T harem, we are done.
st Prime and Maximal ideals:
Assume R is a commutative ring.
Def: A proper ideal $8 \subset R$ is a prime ideal if fr ester a, b in R, we hare:

$$
a b \in P \Rightarrow a \in P \quad r \quad b \in P \text {. }
$$

Def: A proper ideal $m \subsetneq R$ is a maximal ideal if $m \nsubseteq x \subseteq R, x$ ideal $\Rightarrow x=R$.
Proposition 1: Maximal ideals exist.
Proof: Write of = st of all proper ideals of R.

- $\mathcal{f} \neq \varnothing$ since $(0) \in \mathcal{f}$.
- I is partially ordered by inclusion

Consider a chain (= a Totally odored subset of of)

$$
\left(a_{i}\right)_{i \in I} \text { where } a_{i} \subseteq a_{j} \text { if } i \leqslant j \text {. }
$$

Define $x=\bigcup_{i \in I} x_{i}=\sup _{i \in I}\left(a_{i}\right)$
Claim: $x \in \mathcal{I}$.
PF/. $a, b \in x$, then $\exists l$ st $a, b \in x_{l}\left(\begin{array}{c}a \in \mathcal{X}_{i} c a_{l} \\ b \in x_{j} c r_{l}\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow a \pm b \in x_{l} \subset a \\
& 0 \in \pi \\
& -a \in \pi, r \in R \Rightarrow \exists l \text { st } a \in x_{l} \Rightarrow r a \in \mathscr{X}_{l} \\
& a,
\end{aligned}
$$

So x is an ideal

- $x_{\text {is }}$ poofter since $1 \notin r_{i} \forall i$ so $1 \notin \bigcup_{i \in \Gamma} \pi_{i}$.

In condusin: every chain in f has a supreme in \mathcal{f}. By Zen's Lemma, there are maximal clements in of
Corollary z: Let $x \subset R$ be puffer ideal. Then, there exists a maximal ideal m of R containing α.
Proof Use the Proposition for $R^{\prime}=R / \alpha$ a check that maximal ideals of R^{\prime} correspond To maximal ideas of R containing $a c$. This is tire by the $2^{\text {nd }}$ Ismorphison Thurem.
. Next we characterize prime ideals:
Proposition 2: $\quad \gamma \leftrightarrows R$ ideal is prime $\Leftrightarrow R / 8$ is an interval

Pod: 8 is prime $\Leftrightarrow a b \in 8$ implies $a \in 8 \pi b \in 8$
$\Leftrightarrow \pi_{(a)} \pi_{(b)}=0$ in R / p inflies $\pi_{(a)}=0$ or $\pi_{(b)}=0$ (Here $\pi: R \longrightarrow R / \beta$).
$\Leftrightarrow R / 8$ is an integral domain.
Lemmas: A commutative ring R is a field if sally if $(0) \& R$ an the only ideals in R
Sf/ $\Rightarrow I \in \mathscr{f}(R) \quad I \neq(0)$. Rich $x \in I \backslash\{0\}$ then $\exists y$ st $x y=1$ so $\quad I=R$.
(\Leftarrow) Pick $x \in R, 30\}$ a consider $I=(x)$ ideal. Then $I=R \exists 1$, mammy $\exists y \in R$ with $1=y x$ so $x \in R^{*}$.

Proposition 3: $m \subsetneq R$ ideal is maximal $\Leftrightarrow R / m$ is a pill Pf/ Rem is a field $\underset{\text { Lemma }}{\Longleftrightarrow}(0) \& R / m$ are the may ideals in R / m
Since $\left\{\right.$ ideals in $R / a r \nmid \xrightarrow{1-t_{0-1}}$ \{idials in R containing We conclude:
R / m is a field \Leftrightarrow the only ideals of R containing m all m and $R \Leftrightarrow m \subseteq R$ is a maximal ideal.
Corollary 3: Every maximal ideal is prime.
If/ Fields are intequal domains.

Examples: $R=\mathbb{Z} \quad\{(0),(p): p \in \mathbb{Z}$ prime $\}$ are all the prime ideals.

- (D) is prime but not maximal
: (p) is maximal fo every $p \geqslant 2$ prime.
Propsitim 4: Let $f: A \longrightarrow B$ be a ring homomorphism, where A, B are commutative rings. Let $q \subset B$ be a prime ideal.
Then $\gamma=f^{-1}(q) \subset A$ is a prime ideal.

1. The statement fails for maximal ideals!
$E_{\underline{x}}: \mathbb{Z} \xrightarrow{C} \mathbb{Q}, q=(0)$ is the only maximal ideal, but $f^{-1}(0)=(0)$ is not maximal in \mathbb{Z}.

Proof: We know that $f^{-1}(q)$ is an ideal of A (Lecture is) Given $a, b \in A$ with $a b \in P$, we want to show $a \in P$ or $b \in P$. But $f(a b)=f(a) f(b) \in q \underset{q_{\text {prime }}}{\Rightarrow} f_{(a)} \in q \geqslant f_{(b) \in q}$. Hence, $a \in \beta r b \in \varnothing$.
§3 $P_{\text {rime avoidance: }}$
Fix R commutative ring
Theorem: Fix P_{1}, \ldots, P_{n} prime ideals of R \& let $x \subset R$ be an ideal with or $\subset \bigcup_{i=1}^{n} P_{i}$. Then, there exists some $j=1, \ldots, n$ with $r \subset P_{j}$.
Poof We will prox the cutraporitise:

$$
x \notin P_{j} \quad \forall j=1, \ldots, n \Rightarrow \bigcup_{i=1}^{n} P_{i} . \quad\binom{\text { prime }}{\text { avidona }}
$$

We argue by induction in n
-The assution is tree for $n=1$.

- Assume $n>1$ a that the assertion hes been reified for $n-1$. Thus for $i \in\{i, \cdots, n\}$ we have:
$a \not \not \neq P_{j}$ fr $j \in\{1, \ldots, n\},\{i\} \Rightarrow r \notin \bigcup_{j \neq i} P_{j}$.
That is, we cam find $a_{i} \in \mathscr{O}$ with $a_{i} \notin \nabla_{j} \forall j \neq i$.
. Now, if $a_{i} \notin P_{i}$ for some i, we are done since $a_{i} \notin \bigcup_{j=1}^{n} P_{j}$.
- On the contrary, if $a_{i} \in P_{i} \quad \forall i=1, \ldots n$, we consider the dement $a=\sum_{l=1}^{n} a_{1} \cdots q_{l-1} a_{l+1} \cdots a_{n} \in \alpha$
For each $i=1, \cdots, n$ ency summand if $a r$, except $a_{1} \cdots a_{i-1} a_{i+1} a_{n}$ lis in $\gamma_{i} \quad$ (as $a_{i} \in \gamma_{i}$)
Sima $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n} \notin \nabla_{i}$ as wore of its factors aram P_{i} then we conduce $a \notin \varnothing_{i} \quad \forall i=1, \ldots n$. which is a contradiction.

Thurem 2: Let a_{1}, \ldots, r_{n} be ideals of R (commentative) and $P \subsetneq R$ be a prime ideal.
If $\bigcap_{j=1}^{n} x_{j} \subseteq P$, then there exists $l=1, \ldots n$ with $\delta_{l} \subseteq P$.
Proof: We will show: $x_{l} \nsubseteq P \forall l \Rightarrow \bigcap_{l=1}^{n} x_{l} \notin P$ By hyp thesis, we have $a_{l} \in X_{e} \backslash P \quad \forall e$.
Take $a=a_{1} \cdots a_{n}$.

$$
\left.\begin{array}{l}
a \in x_{l} \forall l \\
\cdot a \notin 8 \quad(8 \text { is } \text { Anime })
\end{array}\right\} \Rightarrow \bigcap_{l=1}^{n} x_{l} \nsubseteq P
$$

To pose the statement for the eqpecaties, we argue as fellows If $\bigcap_{j=1}^{n} x_{j}=8$, we know $x_{l} \subseteq 8$ frs me l. Consusdy, $\gamma=\bigcap_{j=1}^{n} x_{j} \subseteq a_{l}$, so $\beta=x_{l}$.

