Lecture 19: Ring of pactions, modules of pactions Last time: We defined nultiplicatively closed sets S & the ring of practices S-IR, where R is commutative. SI. Ring of pactions. Def: Fix a commutation ring R & SCR. We say S is a multiplicationly cloud set if: (i) 0∉ S m> otherwise localization gives a set with 0=1. (iii) 1 ∈ S $(iii) a, b \in S \implies ab \in S.$. Équivalence relation ~ m K×S: (a,s) ~ (b,t) (=> Is'ES with s' (at-bs)=0 De The ring of practimes of R relative to S, denoted by S'R is the set RxS/v with (Addition: (a,s) + (b,t) = (at+bs, st) (a,s).(b,t)= (ab, st) (3) N utral elements: 0 = (0,1) & 1 = (1,1)(Think of (9,5) on R'S as a.) Special case: R is an integral dumain (no zero divisios) Then S = Rijof is a multiplicatively closed set. Then S'R is a field called the field of pactimes Somethings denoted by Quot (R) $(a, s) \neq (0, 1)$ is invertible $\& (9, s)^{-1} = (s, a)$. (⇔ a≠o)

Ex:
$$O R = Z$$
, $Quot(R) = Q$ $(q,b) \iff a$
 $(q,b) \sim (c,d) \iff fseZ + 30 f with s(ad + bc) = 0$
But Z is a dimain, so $ad + b = 0$ (since $s \neq 0$)
 $I = gcd(a,b)$ then $\frac{a}{m} = \frac{b}{m} = \frac{c}{m}$ forces
 $\frac{a}{m} = b = \frac{c}{m} = \frac{d}{m} = \frac{s}{m} = \frac{s}{m} = \frac{c}{d}$.
 $a = b = \frac{a}{m} = \frac{d}{m} = \frac{s}{m} = \frac{s}{m} = \frac{c}{d}$.
 $a = b = \frac{a}{m} = \frac{g}{m} = \frac{s}{m} = \frac{c}{d}$.
 $a = 2[x]$, Quot $(R) = Q(x) = \frac{1}{Q(x)} = \frac{1}{Q(x)} = \frac{1}{Q(x)}$
Author special example $\frac{d}{S}$:
 $R = 2[x]$, Quot $(R) = Q(x) = \frac{1}{Q(x)} = \frac{1}{Q(x)$

(

§ 2 Universal Projecties: Fix Rammutative ring & SCR multiplicaturely closed Proposition: We have a natural ring hommorphism $j_{s}: R \longrightarrow S'R$ $a \longmapsto a (= class of (9,1))$ such that for every tes, is(t) is insertille in SIR (its imme is 1) Proof. Definition of the ring structure on S-1R makes js a ring honomorphism. • $\left(\frac{t}{t}\right)^{-1} = \frac{1}{t}$ because $(t,1) \cdot (1,t) = (t,t) = (t,1)$ Ihroum, Fix B another commutative ring & let h: R -B be a ring hummrighism such that $\forall t \in S: F(t) \in B$ is insettille Then, there exists a unique ring homomorphism F:S'R -> B making fojs=f

Pred Wanttoshow
$$R \xrightarrow{f} B$$

is $f \xrightarrow{f'} R \xrightarrow{f'} \exists i \vec{F}$
Set $\vec{F}(\underline{a}) := f(a) f(s)^{i}$
• hull - defined: $\underline{a} = \frac{b}{t} \iff \exists s' \in S \text{ with } s'(at-bs) = 0$
Then $f(s) (f(a) f(t) - f(b) f(s)) = 0$
 $B^{*} \xrightarrow{f'} \implies f(a) f(t) = f(b) f(s)$
So $f(a) f(s)^{i} = f(b) f(t)^{-i}$ in B

• Ring luminaryluism:
•
$$\overline{F}(\frac{a}{5} + \frac{b}{t}) = F(\frac{at+bs}{5t}) = F(at+bs)F(st)^{-1}$$

= $(F(a)F(t) + F(b)F(s))F(s)^{-1}F(t)^{-1}$
= $F(a)F(s)^{-1} + F(b)F(t)^{-1} = \overline{F}(\frac{a}{5}) + \overline{F}(\frac{b}{t})$
• $\overline{F}(\frac{a}{5}\frac{b}{t}) = \overline{F}(\frac{ab}{5t}) = F(ab)F(st)^{-1}$
= $F(a)F(b)F(s)^{-1}F(t)^{-1} = F(a)F(s)^{-1}F(b)F(t)^{-1}$
= $\overline{F}(\frac{a}{5})\overline{F}(\frac{b}{t})$
• $\overline{F}(1) = \overline{F}(\frac{1}{1}) = F(1)F(1)^{-1} = 1 \cdot 1^{-1} = 1^{-$

\$3. Modules of pactions:

Fix R commutative ring & SCR multiplicatively closed. Given M an R-module, we want to define a "module of practions". Since R is an R-module, we can mimic the construction of S-'R = $R \times S/n$.

Exercise: This is an equivalence relation (HW7)

Ne make this into an abelian group;
Addition:
$$\frac{m}{s} + \frac{m'}{s'} = \frac{s(m + s \cdot m')}{ss'}$$

Nuclear element :
$$\frac{\sigma}{1}$$

Exercise : Show this is well-defined & $-(\frac{m}{s}) = \frac{-m}{s}$.
Proposition : The abelian group $S^{-1}\Pi$ is both an R-module
& an $S^{-1}R$ -module ria
 $\frac{\sigma}{s} \cdot \frac{m}{t} = \frac{q \cdot m}{st}$ $\forall q \in R, s, t \in S$ $m \in M$

(R-module structure, use js: a.m. = a.m.)

$$\frac{E_{Xeccise}:}{W_{i}} Show this is will-defined a satisfies the perfecteddefining modules.
We have an R-linear map $i_{S}: \Pi \longrightarrow S^{-1}\Pi$
 $m \longmapsto m_{1}$
Universal Projecty: Write $\widetilde{H} = S^{-1}\Pi$
() Free each sets, consider the gp have $f_{(S)}: \widetilde{H} \longrightarrow \widetilde{\Pi}$
 $m \longmapsto S:m$
We have $f_{(S)} \in End_{R}(\widetilde{\Pi}) = f_{(S)}$ is invertible
 $f_{(S)}^{-1} = f(\frac{1}{S}) \in End_{R}(\widetilde{\Pi})$
(2) Let N be another module over R such that $\forall S \in S$
 $f_{(S)}: N \longrightarrow N$ is invertible (as $f_{(S)} \in End_{R}(N)$)
 $\eta \longmapsto sn$
Given an R-linear map $\widetilde{F}: \widetilde{\Pi} \longrightarrow N$ there excises
 $m \bigoplus Sin$
 $\Pi \longrightarrow Sin$
 $\Pi$$$

**89. Ideals in S⁻R:
Fix R commutative sing, SCR welt cloud
$$a_{15}: R \rightarrow S'R$$

the natural scing humanisphism.
Given $\delta C \subset R$ ideal, we define:
 $S^{-1}\delta C = ideal in S^{-}R$ generated by $JS(\delta C)$.
Perfortion: S⁻¹ δC agrees with the module of fractions of
 δC (numed as an R-module) selative to S.
Theorem: Every ideal in S⁻¹R is of this form (=S^{-1}\delta C for
men $\delta C \subset R$ ideal)
Furthermore, S⁻¹ $\delta C = S^{-1}R \implies SO(\delta C = JS^{-1}(B)$.
We hnow δC is an ideal because J_{5} is a ring humanisphism.
Otem: S⁻¹ $\delta C = B$
 $SF'(C) = S^{-1}R = S^{-1}R = S^{-1}R$
 $Claim: S^{-1}\delta C = B$
 $SF'(C) = S^{-1}R(a = acd C) = b = S^{-1}R$
(ideal)
So $S^{-1}\delta C = S^{-1}R(a = acd C) = b = S^{-1}R$
(2) Fid $x \in B$. Then $x = \frac{y}{S}$ for some yeR, SES
 $\Rightarrow \frac{1}{S} = \frac{1}{S} = \frac{1}{S}$ so $J \in \delta C$ so $B = S^{-1}\delta C$.
For the last years:
 $T = SO(\delta C, write C) = \frac{1}{S} = S^{-1}\delta C$.**

(muchading, assume i
$$\in S^{-1}OC$$
. Then, $\exists a_1, \dots, a_n \in \deltaC$ a
 $\exists 1 \dots \exists n \in S^{-1}R$ with $1 = \sum_{i=1}^{n} \frac{c_i}{s_i}$ $a_i = \sum_{i=1}^{n} \frac{(r_i a_i)}{s_i} = \sum_{i=1}^{n} \frac{b_i}{s_i}$
bethere $s = \prod s_i$ is a $b_i = r_i a_i \prod s_j$. $\in C$ theorem
BOT $\sum_{i=1}^{n} \frac{b_i}{s} = \frac{z_i}{s_i} \frac{b_i}{s_i} = \frac{b_i}{s}$ with $b = \sum_{i=1}^{n} b_i \in \deltaC$
So $i = \frac{b}{s}$ for $b \in CC$, $s \in S$ $\Longrightarrow \exists t \in S$ with
 $0 = t(s_{i-1} - b_{i-1}) = ts - tb$
So $ts = tb \in S \cap CC$.
 \exists CC
Proposition: Prime iduals in $S^{-1}R$ and j the form $S^{-1}P$, where
 $P \subseteq R$ is a prime idual with $B \cap S = P$.
But $f \subseteq S^{-1}R$ be a prime idual. By the proof of the provises
Theorem, we know $g = S^{-1}C$ where $CL = js^{-1}(g)$.
Since g is prime a_{js} is a ring luminorphism, we know dC
is a prime idual of R . Since $g \subseteq S^{-1}R$, we must have $OL \cap S = P$.
Conversely, given $B \subseteq R$ prime with $B \cap S = P$, we want to show
 $S^{-1}B \subseteq S^{-1}R$ is a prime idual.
Properties follows aire $S \cap S = p$
 $S^{-1}B$ is a nime idual.
 $Properties follows aire $S \cap S = p$
 $S^{-1}B$ is a nime idual.
 $Properies follows aire $S \cap S = p$
 $S^{-1}B$ is a nime idual.
 $Properies follows aire $S \cap S = p$
 $S^{-1}B$ is a nime idual.
 $Properies follows aire $S \cap S = p$
 $S^{-1}B$ is a nime idual.
 $= \frac{s_i}{s_i} \in S^{-1}B$ with $a_i b \in R$ site R we put
 $a_i = (s_i) \xrightarrow{a_i}{s_i} \in S^{-1}B \xrightarrow{a_i}{s_i} = s_i \in S^{-1}B$.$$$$

ĥ