Lecture 21: Noetherian modelles & Hilbert Basis Thu

51 Northerian ring R is called Northerian if for every
chain of ideals of R
$$\alpha_0 = \alpha_1 \in \alpha_2 \in \alpha_3 \in \cdots$$
.
There is $k \ge 0$ with $\alpha_k = \alpha_{k+1} = \cdots [A\alpha - Asce chain condition]$
Theorem 1: Fix R a commutative ring, TFAE:
(1) R is Northerian
(2) Every unempty set \mathcal{G} of ideals of R has a maximal element
(3) Every ideal $\alpha \in \mathbb{R}$ is fractily generated.
(in Principal ideal domains are Northerian (eg $\mathcal{G}(x)$)
(c) If $f: A \longrightarrow B$ is a ring humanization (eg $\mathcal{G}(x)$)
(c) If $f: A \longrightarrow B$ is a ring humanization with A, B commutation
Assume his mighture. If A is Northerian, so is B.
(s) Rings of fractions of Northerian rings are Northerian. Is
particular, liveralizations preserve Northerianes.
So $\alpha = (\alpha_1, \dots, \alpha_n)$. Then $f = f(\alpha) = (f(\alpha_1), \dots - f(\alpha_n))$.
 $f \times m_1 = 0$ Submings of Northerian rings need with Le Northerian.
Ex: Take $R = 0$ [x, x₂, ...] = $\bigcup_{n \in \mathbb{N}} 0$ [X₁, x₂, ..., x_n]
R is not Northerian rings need with Northerian.
Ex: Take $R = 0$ [x, x₂, ...] = $\bigcup_{n \in \mathbb{N}} 0$ [X₁, x₂, ..., x_n]
R is not Northerian rings need with Le Northerian.
Ex: Take $R = 0$ [x, x₂, ...] = $(0 \in \mathbb{N}, x_2, ..., x_n]$
R is not Northerian $k = R \subset 0$ (voot (R) = field.
Since the ruly ideals of Qoot (R) are (0) at (1), we get that
Quot (R) is Northerian.

Hilbert Basis Thm: If Ris Northenian, so is R[x]. Hence Z[x, -, x,], K[x, -, x,] an Northerian In any field K. . To prove this result, we'll med the notion of Noetherian modules. § 2. Northerion modules: Fix R = commutative ring. & M an R-module. Def: We say M is Northenian if it satisfies the ascending chain undition 157 submodules: "Every chain of submodules No CI, EN2 E stabilizes ie $\exists l \ge 0$ st $\Pi_{l} = \Pi_{l+1} = \cdots$ We have the following analog of Thurcem 1: Thurem 2: Fix R a commitative ring & Man R-module, TFAE: (1) M is Northenian (2) Every unempty set I of submodules of M has a maximal element (3) Every submodule of M is fruitely generated. The proof is exactly the same as that of Thm 1. Corollary 2: Let 0 __ M, _ M2 _ M3 - o be a ses of R-modelles. Then: M2 is Noetherian if, and only if, M& M3 are. Proof: =>>> submodules of II, are submodules of IIz via F. $----N_3 \leq \Pi_3$ come from $g^{-1}(N_3) \leq M_2$ sub-modules 8-1(N3) = < m1,...me>, then N3 = < g(m1), --, g(me)> by surjectivity of g. \iff Pick N a submirkule of M_2 then $g(N) \in M_3$ is a subm.

so $g(N) = (m_s, ..., m_s)$. Pick $n_1, ..., n_s \in N$ with $\Im(u_1) = m_1 , ..., \Im(u_S) = m_S$. Next Take $F(N \cap F(M_1)) = N_1 \subseteq M_1$ submodule, co its finitely generated N, =< q, - qe> Then $n'_{3} = f(q_{1})$, $n'_{2} = f(q_{2})$. $s \, Nnf(n_{1}) = \langle n'_{1}, \dots, n'_{2} \rangle$ <u>Ulaim:</u> $N = \langle n_1, ..., n_s, n'_1, ..., n'_e \rangle$ H_{Vick} nen, so $g(n) \in g(N) = \langle m, \dots, m_{s} \rangle$ That is $g(n) = q_1 m_1 + \dots + q_s m_s = q_1 g(n_1) + \dots + q_s g(n_s)$ = $g(q_1 n_1 + \dots + q_s n_s)$ $q_1 \dots q_s \in \mathbb{R}$ This means n-q,n,-..-asus Ekerg=Inh, so $n-q, n, -\cdots - q_s n_s \in N \cap f(\Pi_i) = \langle n'_i, \ldots, n'_\ell \rangle$ include nE < n,...ns, n'y, ... n'e> Note: (1) K is an R-module. Then: Ris a Northenian R-module if, and mly if R is a Northenian ring. (2) Recall: Subrings of a Noetherian ring nued not Le Noetherian (3) A finite direct sum of Northenian modules is Northenian (Hint: Induct on the number of cummonds & use Corollary 2) (4) M: Noetherian R-module ⇒ SM is a Noetherian S'R-mod. 5 milt closed set of R Proprilin: Let R be a Northerian ring & M an R-module. Then It is Noetherian if a nly if It is finitely generated, ie I ×1,..., xe ∈ Π st very x in Π can be written (no necessarily uniquely) as $X = a_1 X_1 + \dots + a_k X_k$ for $a_1, \dots, a_k \in \mathbb{R}$.

Proof (=>) View II as a submitted of II since Theorem 2.
(=) As II is finitely prevented as
$$II = \langle x_1, ..., x_k \rangle$$
 we have $R \xrightarrow{f_i} II$ metablism of R -modules. By the arr $R \xrightarrow{f_i} II$ metablism of R -modules. By the arr $A_i \to A_i \times I$
unimenal projecting of $R \oplus \cdots \oplus R$ we have a unique $F : \bigoplus R \xrightarrow{f_i} II \xrightarrow{f_i} I$ if $R \xrightarrow{f_i} II$
 $(a_1 \dots a_k) \mapsto \stackrel{f_i}{\geq} a_i \times II$ R -letter map $f \in \bigoplus R$
 $(a_1 \dots a_k) \mapsto \stackrel{f_i}{\geq} a_i \times II$ R -modules: $F_i = \prod_{i=1}^{k} II \xrightarrow{f_i} II$
Teathermore, we get a sets of R -modules: $F_i = \prod_{i=1}^{k} II \xrightarrow{f_i} II$
 $O \longrightarrow \ker f \longrightarrow \bigoplus R$ is also a Northerian II .
 R -module . Again by Groblary $Z : Im f = II$ is Northerian II .
 $Examples \bigoplus R = K = field , II = K$ -vector space
 $II Northerman \longrightarrow find $II = R$.
 $R = IK [X]$ (Northerman $Iing$, since it's a PID)
But $II = IK [x, y]$ is not a Northerman R -module
 $IIt will be a Northerman ring :
 $R = finiteneos (I-valued functions on R f)$
 $F_n = I \stackrel{f_n}{=} f = I$ $x > I$ (module durin of intereds with IF_i) sol
 $R = IF \in R = I = f_{F_n} = 0$ is an ideal in R.$$

$$\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \subseteq \mathcal{A}_{3} \subseteq \cdots$$
 is a strictly intransing them
So R is Not purtherian.
So not an #0
So not an #0
So not an #0
So not an #0
So not R is an ideal.
So not a ince LT(0) =0 a o E b
(e) a LT(F) $\in \mathcal{A}$ if a f a b is an ideal.
St/(i) 0 $\in \mathcal{A}$ where $LT(0) = 0$ a o $\in b$
(c) a LT(F) $\in \mathcal{A}$ if $LT(F)$ is finded.
So not R is an ideal.
So not R is a ideal.
So not R is a if a LT(F) is R if if it IT(F) a LT(g) do
So not R if a if a LT(F) is R index of C if a secure if a C if a if a C

Sinc R is Northerian, we have
$$\mathcal{X}$$
 is h.g. by a,...ax
with q posti. For each $j = 1, ..., l$ pick $f_j \in bruth [a_j = LT(f_j)]$.
Let $r = \max dy[f_j] \ge 0$. Let $\Pi \subset R[x]$ be the
 $r \in j \leq l$
R-submodule generated by $H(x_1, ..., x^{r-1})$ (so Π is the
set of polynomials of degree $\leq r$) Since R is Northerian $\geq \Pi$
is fig. then Π is wortherian.
Now $f \cap \Pi \subset \Pi$ is a submodule of Π so its also finitely
generated say by $H_1, ..., H_k$?
 $(Laim 2: b = \leq b_1, ..., b_k, f_1, ..., f_k >$
 $generated say by $H_1, ..., H_k$?
 $(Laim 2: b = \leq b_1, ..., b_k, f_1, ..., f_k >$
 $generated say by $H_1, ..., H_k$?
 $Let a = LT(F)$ with $dy(F) = 2 \ge dy[f_j] \ge dj^* Hj$
 $since a \in C$, we have $a = r, a, t - ... + r_k q_k$ for weither $r_1 - r_k$
 $Thus, g = f - \sum r_j x^{d-2j} Fj = b = a = dy g \leq dy f$.
 $J_1 = dy f = r_1 + then = dy g \leq dy f = a = g \in f$. By IH ,
 $g \in \leq b_1, ..., b_k, f_1, ..., f_k >$
 $I_1 = hy f > r_1, then = deg g < deg f = a = g \in f$. By IH ,
 $g \in \leq b_1, ..., b_k, f_1, ..., f_k >$
 $I_1 = hy f > r_1, then = deg g < deg f = a = g \in f$. By IH ,
 $g \in \leq b_1, ..., b_k, f_1, ..., f_k >$$$