Lecture 22 : Artinian Rings

Last Time : discussed Northerian modules & Hilbert Basis Theorem (ACC) TODAY: Antinian rings, defined using descending chains. Q Why study Antinian rings? A:Geometrically Antinian rings correspond to finite collections of fat points (ie, prints with multiplicities) <u>5. Definition & first properties:</u>

Definition: Let R Le a commutative ring. We say that R is Arlinian (after Emil Artin) it every descending chain of ideals $\alpha_0 \ge \alpha_1 \ge \dots$ stabilizes, ie 3 Lzo with $\mathcal{A}_{\ell} = \mathcal{A}_{\ell+1} = \cdots$ (Desunding Chain Condition) Ex: OR= IK field is Actimian R= IK(x)(xn) (Ideals are IK-subspaces & Im R=n) IK Lemma ! Let I be un-empty set of ideals in an Artimian ring. Then I has minimal elements (with respect to inclusion) 3roof: (Same idea as will Northenian Rings) Let a & J. If a, is minimal, we are done. Otherwise, we find al, eJ with do Zaly. As R is Arlinian, this process must slop and we will arrive at a minimal element of J. I Lemmare: Artinian property is preserved under quotients by ideal 34/ Let a < R be an ideal and R be Artinian Then $\tilde{R} = R/\alpha$ is also Antimian since ideals in R correspond to ideals in R antaining a. So the DCC for R yields the DCC for R. Π

Supportion 1: Let R Lean Artinian commutative ring. Then:
(i) Every prime ideal in R is maximal.
(ii) There are only finitely many maximal ideals in R.
Swoof: (i) Let
$$B \subseteq \mathbb{R}$$
 be a prime ideal. Then \mathbb{R}/\mathbb{R} is an
Artinian integral domain. I by Lemma 2)
Now that $x \in \mathbb{R}/\mathbb{R} > 301$ is consider the descending chain
of ideals in \mathbb{R}/\mathbb{R} :
 $(x) \equiv (x^2) \equiv (x^3)$
Since it eventually stabilizes, $\exists k \geq 1$ with $(x^k) = (x^{k+1})$
is $x^k \equiv y x^{k+1}$ for $y \in \mathbb{R}/\mathbb{R}$.
 $\Rightarrow x^k(1 - xy) = 0$
As \mathbb{R}/\mathbb{R} is a domain and $x \neq 0$ we have $1 = xy$, so
 x is a unit.
We conclude $(\mathbb{R}/\mathbb{R})^{\times} = \mathbb{R}/\mathbb{R} > 309$, so \mathbb{R}/\mathbb{R} is effeld
This means \mathcal{B} is a maximal ideal of \mathbb{R} .
(ii) Let $\mathcal{J} =$ set of ideals that are finite interactions of
maximal ideals $|\mathbb{R}\mathbb{R}|$
 $\cdot \mathcal{J} \neq \emptyset$ when maximal ideals \mathcal{M} exist $\mathcal{R} = \mathbb{H} = \mathbb{H}$.
By the Artinian endition $\mathcal{R} = 2M_{1,1} - M_{1,2}$
 \mathcal{R}/\mathbb{R} there is a maximal ideals $\mathcal{M} = 2M_{1,2} - M_{2,1}$
 \mathcal{R}/\mathbb{R} the maximal ideals in $\mathbb{R}_1^k = 2M_{1,2} - M_{2,1}$
 \mathcal{R}/\mathbb{R} the maximal ideals in \mathbb{R} is a minimum of $\mathbb{R} = 2M_{1,2} - M_{2,1}$
 \mathcal{R}/\mathbb{R} the $\mathcal{M} \subseteq \mathbb{R}$ maximal ideal \mathcal{M} then $\mathcal{M} \cap \mathbb{R} \in \mathcal{J}$

If $\alpha = (0)$ we are done. So assume $\alpha \neq (0)$. Then, we consider $J = set f all ideals f \in \mathbb{R}$ st $\mathcal{U} \neq (0)$ $J \neq \phi$ since $\alpha^{\prime} = \alpha \neq (0)$ so $\alpha \in J$. . Pick IEI minimal element. As I. & Z (0), there is $x \in I$ st $x \partial x \neq (0)$ so $(x) \in J$. But $(x) \in I$ By minimality $(x) = \underline{T}$ But $(x \partial t) \partial t = x \partial t^2 = x \partial t \neq 0$ so $\times \partial t \in J$ Once again $x & \subseteq (x)$, so minimality gives (x) = x &This means I yE & st x = xy, ie $X = XY = XY^2 = \cdots$ Since yEOCCIV we have that y is nilptent. ie I me IN with y^m=0. $\underline{\text{Inclusim}}: X = Xy^{m} = 0 , \text{ unbadicting } X = I & \neq .(0)$ 口