Lecture 23: Artinian rings II

Last time. We defined Antimian rings R as rings with DCC Peoportion 1: Let R Le an Antinian commutative ring. Then: (i) Every prime ideal in R is maximal. (ii) There are only finitely many maximal ideals in R Property: RArtimian & integral domain => Ris a hield Corollany: Nilradical = Jacobs mradical for Antimian rings Proposition Z: The nilradical ideal w C R (Artinian) is nilpotent $(e \exists n \ge 0$ such that $N^n = (0)$. Examples : 1 K (N=(0)); 2 K(x)/(x"). $(\mathcal{N} = (\mathbf{x}))$ \$1. Geometric interpretation of Antimian Rings. We let $m_{1,...,m_{\ell}}$ be the maximal ideals (= prime ideals) of R Note that maximal ideals are always coprime In the sequel, we will need the following general result: Lemma 1: Fix A a commutation ring and OC, b < A be Two coprime ideals. Then a's b' are coprime tizes. Mouver & Ab = U. b (same is true for finite intersections of coprime ideals) <u>Inord</u>: Since Q+f=1]ack abet with 1=a+b

 $l = (a+b)^{li} = \sum_{j=0}^{2i} {\binom{2i}{j}} a^{2i-j} b^{j}$

So $1 = \left(\sum_{j=0}^{\infty} {\binom{2i}{j}} b^{j} a^{i-j}\right) a^{i} + \left(\sum_{j=1}^{\infty} {\binom{2i}{j+i}} a^{i-j} b^{j}\right) b^{i}$ ebi $\mathcal{A} \cdot \mathcal{b} \subseteq \mathcal{A} \cap \mathcal{b}$ is always true x = ax + xb Gab • Pick $x \in O(n)$ b 1 = a + b so ear ear By Propriting 2, pick n with Il" = (0). Since & M,",..., Met are painwise coprime, we use the Chimese Remainder Theorem to set a surjective map of rings: $\Psi: \mathcal{R} \longrightarrow \mathcal{R}_{M,n} \times \cdots \times \mathcal{K}_{M_{e}}$ $\operatorname{Ker} \varphi = \mathfrak{M}_{1}^{n} \cap \cdots \cap \mathfrak{M}_{e}^{n} = \mathfrak{M}_{1}^{n} \cdots \mathfrak{M}_{e}^{n} \subseteq \mathcal{N}^{n} = (o)$ (ψ) since $\mathcal{N} = \mathcal{M}_1 \cap \cdots \cap \mathcal{M}_{\mathcal{R}} = \mathcal{M}_1 \cdots \mathcal{M}_{\mathcal{R}}$ This implies the following Structure Theorem for Antimian rings: Thiorem: R ~ R/m × R/m × ···· × R/me RAntimian & Maxiduals = 3 m, ..., Met with nst N = (0). Here, R/min is a local ruing with unique maximal ideal $\overline{M}_{j} = \overline{\mathrm{IU}}(m_{j})$ where $\overline{\mathrm{IU}}: \mathbb{R} \longrightarrow \mathbb{R}_{m_{j}}$ is the natural rejection. Parof The ismorphism follows from the discussion above

It remains to show that R/m is local Hisjel. Let 9 4 4 R/m be a maximal ideal, so it's prime Thun q is the image of $\mathcal{B} = \pi^{-1}(q) \subseteq \mathbb{R} \otimes \mathcal{B}$ is a prime ideal intaining m_{j}^{n} . Problem 12 HW7: M = & M maximuel & & prime => M = P. We conclude $M_j = 8 \times 50$ $q = T(M_j)$ \$ 2 The local case : Proposition, If R is Artimian and local then R is Noetherian JF/ Let M be the unique maximal ideal of R & write h= P/me for the quotient. We know k is a field. For each j=0: the set MJ mj+1 is a module over k, ie a k-vitor space. By Lemma 2 below, dem k MJ/mj+1<00. Pick $\partial C \subseteq \mathbb{R}$ & consider $\partial C_j = \partial L \cap M S$. $\alpha_j \longrightarrow m^{\circ} \xrightarrow{\mathcal{K}} m^{\circ}$ $\ker(F) = \alpha_j \cap m^{j+1} = \alpha \cap m^j \cap m^{j+1} = \alpha \cap m^{j+1} = \alpha_{j+1}.$ So ajuit is a k-subspace of MJ, so finite demensional Let hail),..., a(s) p be a k-basis (s) a(j), with $a_{i}^{(j)}$ \dots $a_{a_{j}}^{(j)} \in \mathcal{X}_{j}$

Freach may, let or a de the ideal of R generated by $B := \bigcup_{j \ge 1} A a_{j}^{(i)}, \dots, a_{2j}^{(i)} \}$ Since $M^n = (0)$, $\tilde{\alpha}$ is finitely generated Set $\tilde{\alpha}_j = \tilde{\alpha} \cap M \hat{\beta}$ $\forall j = 1, ..., n$. $\left(\alpha_{m} = (0) \forall m \ge n \right)$ $\underline{\text{Chaim}}, \quad \partial C_j = \partial C_j \quad \forall \quad 1 \leq j \leq n$ 3F/ By reverse induction of j · <u>Base case</u>. j=n $\tilde{\alpha}_n = \tilde{\alpha}_n = (0)$ since $M^n = (0)$. Inductive step: We know $\mathcal{A}_{j+1} = \mathcal{A}_{j+1}$ by inductive hyp. So $\tilde{a}_{j+1} \subseteq a_{j} = k \langle a_{i}^{(j)}, ..., a_{kj}^{(j)} \rangle = \tilde{a}_{j+1}$ but $a_1^{(i)}, \ldots, a_{\alpha_j}^{(i)} \in \mathcal{X}_j \cap \widetilde{\mathcal{A}} = \widetilde{\mathcal{X}}_j$ So $\underline{\tilde{a}_{j+1}} = \underline{a_{j}}$ is k-v-solding $a = \underline{a_{j+1}} \in \underline{\tilde{a}_{j}} \in \underline{a_{j}}$ So given $a \in \underline{a_{j}} = \underline{a} =$ The claim gives $\alpha = \alpha \cap m = \alpha_1 = \tilde{\alpha} = \tilde{\alpha} \cap m = \tilde{\alpha}$ so α is fig again $\tilde{\alpha} = \alpha \cap m = \alpha_1 = \tilde{\alpha} = \tilde{\alpha} \cap m = \tilde{\alpha}$ so α is fig So R is Northenian by construction. As a natural insequence of This proposition & the Structure There we get Corollary Artinian => Noetherian

Lemma 2: If (\mathbb{R}, M) is A Jimian, then dim M_{M} M_{M}^{j} ; ∞ . $\forall j$. $\Im F/We new k = \mathbb{R}/M = (\mathbb{R}/M^{j+1})/(\mathbb{M}/M^{j+1})$ (By $2^{n\delta}$ Iso Then fraces)Then, subspaces (once k) in M_{M}^{j} ; M_{M}^{j+1} (By $2^{n\delta}$ Iso Then fraces) $Then, subspaces (once k) in <math>M_{M}^{j}$; M_{M}^{j+1} (oncestimated by formed = 0; form

If $\lim_{m \to \infty} \frac{m_{mit}}{m_{i}} = \infty$, we can find an infinite strictly descending chain of subspaces, tailing with a countable infinite, linear independent set & removing one such retur at a time. This sequence gives an infinite strictly descending chain of ideals in R/miti annihilated by M/miti.

This cannot happen because R/miti is Antimian. \$3. Hencel's Lemma:

The next mult, brown as Hensel's Lemma, is used to factor any polynomial by working modulo M, M^2, \dots The main instance of this is when we work with disphantine equations : we aim to factor one $Z(p) = 3 \frac{a}{5} : pXbf$ (computing the p-adic expansion of factors) Other applications include setsing equations by p-adic approximation.

Hensel's Lemma: Let
$$(R, M)$$
 be an hitimian local ring.
Let $f(x) \in R[X]$ and assume we have $g(x_0, h(x))$ in $R[X]$ st.
 $F(x) - g(x_1)h(x) \in M[x] = MR(x]$
 $-g(x_0) \ge h(x)$ are coprime module M , i.e. $\exists g(x_1), b \in R(x]$
 $g(x_1) \ge h(x_1)$ are coprime module M , i.e. $\exists g(x_1), b \in R(x]$
 $g(x_1) \ge h(x_2)$ are coprime module M , i.e. $\exists g(x_1), b \in R(x]$
Then, $\exists \tilde{g}, \tilde{h} \in R[X]$ st $F(x_2) = g(x_1)h(x)$ and
 $g \equiv \tilde{g}(x_2) \ge h(x_3) = \tilde{h}(x_3)$ module $M(x]$.
 $g(x_1) = g(x_2) \ge h(x_3) = \tilde{h}(x_3)$ module $M(x]$.
 $g(x_1) = g(x_2) \ge h(x_3) = \tilde{h}(x_3)$ module $M(x]$.
 $g(x_2) = g(x_3) \ge h(x_3) = \tilde{h}(x_3)$ st $f - g_1h(x_3) = M(x_3)$,
 $g(x_2) = g(x_3) \ge h(x_3) = h(x_3) = g(x_3)h(x_3)$
 $g(x_3) = g(x_3) \ge h(x_3) = h(x_3) = g(x_3)h(x_3)$
 $g(x_3) = g(x_3) \ge h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $g(x_3) = g(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_3) = g(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_3) = g(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_3) = g(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_3) = g(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_4) = g(x_4) = g(x_4) = g(x_3)h(x_3) = g(x_3)h(x_3) = g(x_3)h(x_3)$
 $f(x_4) = g(x_4) = g(x_4)h(x_4) = f(x_3) = g(x_4)h(x_4) = g$

$$= c_{\ell} (1 - (a_{q} + b_{h})) + c_{\ell}a(q_{q} - q_{\ell}) + c_{\ell}b(h_{h} - h_{\ell}) + c_{\ell}ab$$

$$\underbrace{e_{1} + m_{[x]}}_{e_{1} + m_{[x]}} \underbrace{m_{\ell_{x}}^{\ell} \in m_{(x)}}_{m_{\ell_{x}}^{\ell} \otimes m_{\ell_{x}}^{\ell} \otimes m$$