Lecture 23: Antimian rings II
Last time: We defined Axtimian rimes R as rings with DCC Proposition 1: Let R be an Astimian commutative simp. Then:
(i) Every prime ideal in R is maximal.
(ii) There are only finitely many maximal ideals in R

Property : R Antimian \& integral domain $\Rightarrow R$ is a field
Gollany: Nilsadical = Jacotsisn radical for Attimian rings
Propesitimz: The milradical ideal $N \subset R($ Artimian $)$ is milpotent, ce $\exists n \geqslant 0$ such that $N^{n}=(0)$
Examples: © $K \quad(N=(0))$; (2) $\mathbb{K}[x] /\left(x^{n}\right) . ~(N=(x))$
S1. Geometric interpretation of Antimian Rings:
We let $m_{1, \ldots, m_{l}}$ be the maximal ideals (= prime ideals) of R
Note that maximal ideals are always coprume
In the sequel, we will need the following general result:
Lemma 1: Fix A a comunutatise ring and $a, b \subset A$ be Two coprime ideals. Then a^{i} \& b^{i} are copsime $\forall i \geqslant 1$.
Moore $a \cap b=a \cdot b \quad($ same is thee fr finite intersections of
Proof: Since $a+b=1 \quad \exists a \in a \& b \in b$ with $1=a+b$ $1=(a+b)^{2 i}=\sum_{j=0}^{2 i}\binom{2 i}{j} a^{2 i-j} b^{j}$

$$
\text { So } 1=\underbrace{\left(\sum_{j=0}^{i}\binom{2 i}{j} b^{j} a^{i-j}\right) a^{i}}_{\in a^{i}}+\underbrace{\left(\sum_{j=1}^{i}\binom{2 i}{j+i} a^{i-j} b^{j}\right) b^{i}}_{\in b^{i}}
$$

- $a \cdot b \subseteq a \cap b$ is always true
- Pice $x \in \alpha \cap b \quad 1=a+b$ so $x=\underbrace{a x^{f}}_{\epsilon a b}+\underbrace{e^{a}}_{\in a b} \in a b$

By Proprition 2 , pick n with $W^{n}=(0)$. Sine $\left\{m_{1}{ }^{n}, \ldots, m_{l}{ }^{n}\right\}$ are pairwise coprince, we use the Chinese Remainder Thurem to set a sujectise map of rimes:

$$
\begin{array}{rl}
\varphi: R & R / m_{1}^{n} \times \cdots \times R / m_{l}^{n} \\
\operatorname{Ker} \varphi & =m_{1}^{n} \cap \cdots \cap m_{l}^{n} \underset{L_{\text {impel }}^{n}}{=} m_{1}^{n} \cdots m_{l}^{n} \subseteq \mathcal{N}_{(\times)}^{n}=(0)
\end{array}
$$

(*) since $N=m_{1} \cap \cdots \cap m_{l}=m_{1} \cdots m_{l}$
This implies the following Structure Thurem for Antimian rings: Theorem: $R \simeq R / m_{1}{ }^{n} \times \mathrm{R} / m_{2}{ }^{n} \times \cdots \times R / m_{l}{ }^{n}$
R Antimian \& Max ideals $\left.=3 m_{1}, \ldots, m_{l}\right\}$ with n st $\mathcal{N}^{n}=(0)$. Here, R / m_{j} n is a local sing with unique maximal ideal $\bar{m}_{j}=\pi\left(m_{j}\right)$ where $\pi: R \longrightarrow R / m_{j}^{n}$ is the natural projection.
Poof The ismirthism follows from the discussion above

If remains to show that R / m_{j}^{n} is local $\forall i \leq j \leq l$. Let $q \subset R / m_{j}^{n}$ be a maximal ichal, so it's prime Then q is the image of $\gamma=\pi^{-1}(q) \subseteq R \& 8$ is a prime ideal containing m_{j}^{n}.
Problem izHW7: $m^{n} \subseteq 8 \quad m$ maximal \& 8 prince $\Rightarrow m=8$. we conclude $m_{j}=P$ \&so $q=\pi\left(m_{j}\right)$
si The local case:
Proportion: If R is A divan and local, then R is Noetherian PF / Let m be the unique maximal ideal of R \& wite $k=R / m$ for the quotient. We know k is a field.
For each $j \geqslant 0$: the set m^{j} / m^{j+1} is a module ore k, ie a k-keto space. By Lemma 2 below, dem $\mathrm{m}^{j} / m j+1<\infty$.

Pick $\alpha \notin R \&$ onside $\alpha_{j}=a \cap m^{j}$.

$$
\begin{aligned}
& a_{j} \stackrel{m^{j}}{\longrightarrow} \xrightarrow{\square} \frac{m^{j}}{m^{j+1}} \\
& \operatorname{ker}(f)=a_{j} \cap m^{j+1}=a \cap m^{j} \cap m^{j+1}=a \cap m^{j+1}=a_{j+1} .
\end{aligned}
$$

So $\alpha_{j / \alpha_{j+1}}$ is a k-subspace of m^{j} / m^{j+1}, so pinite dimensional Let $\left\{\bar{a}_{1}^{(j)}, \ldots, \bar{a}_{\alpha_{j}}^{(j)}\right\}$ be a k-basis $f s a_{j} / a_{j+1}$, with $a_{i}^{-(j)}, \ldots, a_{\alpha j}^{(j)} \in \mathscr{A}_{j}$.

Freach $m \geqslant 1$, let $\tilde{\alpha} \subseteq \mathscr{A}$ be the ideal of R generated by

$$
B:=\bigcup_{j=1}\left\{a_{1}^{(j)}, \ldots, a_{\alpha j}^{(j)}\right\}
$$

Since $m^{n}=(0) \quad \therefore \tilde{a}$ is finitely geurated $\left(a_{m} \neq(0) \forall m \geqslant n\right)$ set $\tilde{a}_{j}=\tilde{a} \cap m^{j} \quad \forall j=1, \ldots, n$.
Claim: $\tilde{a}_{j}=a_{j} \quad \forall 1 \leq j \leq n$
PF/ By use sse induction of j

- Base case: $j=n \quad \tilde{x}_{n}=\tilde{a}_{n}=(0) \quad$ since $m^{n}=(0)$
- Induction scup: We know $\tilde{a}_{j+1}=a_{j+1}$ by inductive hyp.
so $\tilde{a}_{j} \tilde{a} j+1 \leq a_{j}=k\left\langle\bar{a}_{a_{j+1}}^{(j)}, \ldots, \bar{a}_{\alpha_{j}}^{(j)}\right\rangle=\tilde{a}_{j^{(j)}}$.
but $a_{1}{ }^{(j)}, \ldots, a_{\alpha j}^{(j)} \in a_{j} \cap \tilde{a}=\tilde{a}_{j}$
So $\frac{\tilde{a}_{j}}{\tilde{a}_{j+1}}=a_{j} a_{j+1}$ isk-r.sodtm<m \& $a_{j+1} \subseteq \tilde{a}_{j} \subseteq a_{j}$
So firten $a \in a_{j} \exists$ be \tilde{a}_{j} with $a-b \in \tilde{a}_{j+1} \subseteq \tilde{a}_{j}$ $\Rightarrow a \in \tilde{a}_{j}$. We conclude $\tilde{a}_{j}=a_{j}$
The claim fires $a=a n m=a_{1}=\tilde{a}_{1}=\tilde{a}_{n m}=\tilde{a} \quad$ so a is $f g$

$$
\alpha_{\neq R} \quad, \quad \alpha \leq a \leq R
$$

So R is Netherian by construction.
As a natural consequence of This proposition \& the Structure The we get
Corollary Astixian \Rightarrow Noetherian

Lemma 2: If (R, m) is A位ian, then $\operatorname{dim}_{R / m} m^{j} / m j+1<\infty . \forall j$.
Pf/ We new $k=R / m=\left(R / m^{j+1}\right) /\left(\mathrm{m} / \mathrm{m}^{j+1}\right) \quad$ (By $2^{\text {nd }}$ Iss Thun
Then, subspaces (oreek) in $\mathrm{m}^{j} / \mathrm{m}^{j+1}$ conespand bijectiscly To ideals $\frac{T m}{} / m^{j+1}$ with $I \leq m^{5} / m^{j+1}$.
Why? $R \xrightarrow{\pi} R / m j+1 \quad I \subset \frac{m^{j}}{m j+1}$ hews is $d_{\text {so a }} R$-mod (ideal). So

$$
\begin{gathered}
m^{j+1} \leq \pi^{-1}(I) \subset \pi^{-1}\left(m^{j} / m^{j+1}\right)=m_{(*)}^{j}+m^{j+1}=m j \Rightarrow J m \subseteq m^{j+1} \\
=m^{j+1} \leq m^{j}
\end{gathered}
$$

maxing $\frac{m}{m^{j+1}}$ ammikilates I.
Contends if $J \subseteq m^{5} / m^{s+1}$ \& $\frac{m}{m j+1} J=(0)$, then J is. a k-module.
If $\lim _{\mu} m^{j} / m^{j+1}=\infty$, we can find an infinite strictly descending chain of subspaces, stating in th a countable infinite, limes independent set \& remosing one such rector at a time. This spence fires an infinite strictly descending chain of ideals $\mathrm{mR} / \mathrm{mjH}_{\mathrm{H}}$ ammikilated by $\mathrm{m} / \mathrm{mj} \mathrm{m}$.
This cannot happen because $R / m j+1$ is Astimian.
\$3. Hansel's Lemma:
The next malt, known as Heusel's Lemma, is used To factor any polynomial by working modulo m, m^{2},
The main instance of this is when we work with diophantine equations: we aim T_{0} factor se $\mathbb{Z}_{(p)}=\left\{\frac{a}{b}\right.$: $\left.p \times b\right\}$ (computing the p-adic expansion of factors) Other applications include solving equations by p-adic approximation.

Hensel's Lemma: Lit (R, m) be an Attimian brad ring.
Let $f(x) \in R[x]$ and assume we have $g(x), h(x)$ in $R[x]$ st.

- $f(x)-g(x)^{h}(x) \in m[x]=m R(x]$
- $g(x)^{\&} h(x)$ are optime modulo m, ie $\exists a(x), b \in(x) \in R(x]$ sit. $\quad a g+b h=1 \quad$ in $(R / m)[x]$
Then, $\exists \tilde{g}, \tilde{h} \in R[x]$ st $f(x)=g(x) h(x)$ and $g_{(x)} \equiv \tilde{g}_{(x)}$ \& $h_{(x)} \equiv \tilde{h}_{(x)}$ nurdulo $m(x]$.
Proof: We will build approximations of o \& h working modulo m^{l}. fo each $l \geqslant 1$.
Claim $\exists g_{l}, h_{l} \in R[x]$ st $f-g_{l} h_{l} \in m^{l}[x]$, $g_{l}-g \in M_{[x]} \& h_{l}-h \in M[x]$
PF/ By induction on l
Basecase: $l=1 \quad$ Take $g_{1}=g$ \& $h_{1}=h \quad$ (statement's hypothesis)
Inductive Step: Assume we're constructed $3 g_{e}$, he $\}$. Let

$$
\begin{gathered}
c_{l(x)}=f_{(x)}-g_{l(x)} h_{(x)} \in m^{l}[x] . \\
\left\{\begin{array}{l}
g_{l+1}=g_{l}+c_{l} b \quad m>g_{l}^{-g_{l+1}} \in m^{l}[x] \subseteq m_{[x]} \\
h_{l+1}=h_{l}+c_{l} a
\end{array} \quad m \text { h h } h_{l-h_{l+1}} \in m^{l}[x] \subseteq m_{[x]}\right.
\end{gathered}
$$

Then $f_{(x)}-g_{l+1} h_{l+1}=\underbrace{f_{(x)}-g_{l} h_{l}-c_{l}\left(a g_{l}+b h_{l}\right)+c_{l}^{2} a b}_{=c_{l}}$

$$
\begin{aligned}
& =c_{l}(1-(\underbrace{a g+b h}_{\in 1+m}))+c_{l} a(\underbrace{g-g_{l}})+c_{l} b(\underbrace{h-h_{l}}_{\in M_{l}})+c_{l}^{2} a b
\end{aligned}
$$

So $f_{(x)}-g_{l+1}-h_{l+1} \in m^{l+1}(x]$

$$
\begin{align*}
& \cdot g_{l+1}^{-g}=\left(g_{l+1}-g_{l}\right)+\frac{\left(g_{l}-g\right) \in m[x]}{\in m(x)} \text { byIH} \\
& \cdot h_{l+1}-h=\left(h_{l+1}-h_{l}\right)+\left(h_{l}-h\right) \in m[x]
\end{align*}
$$

Using the claim fo $l=n$ with $m^{n}=(0)$ we get

$$
\begin{aligned}
& f-g_{n} h_{n} \in m^{0}(x) \text { ms } f=g_{n} h_{n} \\
& \text { - } g_{n}-g \in m_{[x]} \& \quad h_{n}-h \in m(x]
\end{aligned}
$$

Thus $\tilde{g}=g_{n} \& \tilde{h}=h_{n}$ satisly the desind properties. ©

