Lecture 24: Antinian Rings & Primary Decomposition
Last time: Antinian
$$\Longrightarrow$$
 dimension 0 & Northenian (*)
Standare Theorem: finitely many and ideals (M_1, \dots, M_R) and
 $R \cong \mathbb{P}_{M_1}^{n} \times \dots \times \mathbb{P}_{M_R}^{n}$ (each \mathbb{P}_{M_1} is Artinian
TODAY are will show the conserve to (*). The proof is based on
"primary decomposition"
Fi. Definition a examples:
Tix R to be any commutator ring
Definition: An ideal $q \subseteq R$ is primary if for any $q, b \in R$ we
have "abeq $x, b \notin q \Longrightarrow a^* \in q$ for some $n \ge 1$."
Obs: Equivalently , every gree direct in \mathbb{P}_q is nilpotent. (HW9)
Recall: The readical of an ideal \mathcal{R} in R is
 $r(\mathcal{R}) = \overline{\mathcal{R}}^* = \frac{1}{2} a \in \mathbb{R}$ | $a^* \in \mathcal{A}$ for some $n \ge 1$.
 $f(\mathcal{R}) = \overline{\mathcal{R}}^* = \frac{1}{2} a \in \mathbb{R}$ | $a^* \in \mathcal{A}$ for some $n \ge 1$.
 $\frac{1}{2} \mathbb{P}_{1}^{nimary}$ $\frac{1}{2} \mathbb{E} \mathbb{R}$ primary $\sum_{k \in \mathbb{R}} \mathbb{P}_{1}^{nimary}$ $\sum_{k \in \mathbb{R}} \mathbb{P}_{2}^{nimary}$ $\sum_{k \in \mathbb{R}} \mathbb{P}_$

2 R = K[x,y] q = (x, y²) is primary but NOT a power of a prime ideal. $8 = ((q) = (x, y) \text{ and } 8^2 \neq q \neq 8$ (×∉ 8²) (*) Fgeq with $f = q_0 + x F_{1,y_{2D}} + y F_{2,y_{2D}}$ a₀∈ IK $g = b_0 + x g_1 + y g_2(y)$ 50 ∈ IK $g \notin g$ mans $b_0 \neq 0$ or $(f_3(0) \neq 0$ and $b_0 = 0)$ · Casel : boto => $fg = a_{0}b_{0} + x(gh, +a_{0}g_{1} + g_{1}gh_{2}(y_{1}) + y(h_{2}g + a_{0}g_{2}(y_{1}))$ $fine bg \in (x, y^2)$, then $a_0 b_0 = 0$, so $a_0 = 0$. => $fg = x(f_1g + g_1f_2(y)g_1) + y^2 f_2g_2(y) + b_0g f_2(y)$ => boy $f_{Z}(y) \in q$ so $b_{OY}f_{Z}(y) = X h_{I}(X,y) + y^{2}h_{Z}(X,y)$ Evaluate at x=0 to get boyfz(y) = y2h2(0,y) => $y[f_2(y)$ so $f = 0 + x F_1(x,y) + y^2 \frac{f_2}{y} \in Q$. · Case 2: bo=0 & yX gz(y) $\rightarrow fg = \chi(a_0 g_1 + \chi f_1g_1 + \chi f_2 (y) g_1 + \chi f_1 g_2 (y)) + y^2 f g_2 + y^{a_0} g_2 (y)$ čq $\begin{array}{ccc} \in q & \in q \\ \implies & y \ q \ o \ \delta z \ (y) \ \in \ q & s \ o \ y \ q \ o \ S z \ (y) = x \ h_1 (x, y) + y^2 h_2 (x, y) \end{array}$ $= y^{2} y$ => $f = x f_1 + y f_{2(y)} => f^2 = x^2 f_1^2 + y^2 f_2(y) + 2xy f_1 f_2$ $e(x,y^2) = q$. Note: r(q) =(x,y) is maximal in K(x,y).

This last example is more general (see HW9) Proposition: If R is commutative & ((9) is maximal, then g is primary. Example (3) $R = |K[x, y, z]/(xy-z^2) > 8 = (x, z)$ & is a prime ideal but 8 is not primary. • $R_{g} = K[x, y, z] = K[x, y, z] = K[y] integral$ (x, z, xy-ze) = K[y] integral(x, z) (x, z) (x, z) (x, z) = K[y] integral $\cdot \vartheta^2 = (\overline{X}^2, \overline{z}^2, \overline{X}\overline{z})$ $\tilde{z} = \tilde{y} \times \in \mathcal{B}^2$ & $\chi \notin \mathcal{B}^2$ but $\overline{y} \notin (\mathcal{B}^2)$. (Exercise) A we do have J& 8° but XEB? is, the definition of primary is not symmetric in F&g. Summary of examples; · 9 primary => 9 = power of a prime i deal · 8 primary . · r(4) is maximal => 9 primary s 2. Inducible deals. Def: An ideal $\alpha \subseteq R$ is ineducible if $\alpha = b \cap C$ with $f, C \subseteq \mathbb{R}$ ideals, then $\partial C = f = \partial T \partial C = C$. Terminology unes pun topology: if $R = \mathbb{C}[x_1, ..., x_n]$, then a, b & C deprise closed sits in Q" (solutions to polynmids

m each ideal :
$$V(\partial C)$$
, $V(f_{1}) \downarrow V(C)$. Noteser :
 $\partial C = f \cap C$ translates to $V(\partial C) = V(f_{1}) \cup V(C)$
So we can decomprove $V(\partial C)$.
Lemma : Assume R is Northerian. Then:
(i) Every ideal in R is a finite intersection of ineducible ideals.
(ii) Every ideal in R is a finite intersection of ineducible ideals.
(iii) Every ideal in R is a finite intersection of ineducible ideals.
(ii) Every ideal in R is a finite intersection of ineducible ideals.
(ii) Every ideal in R is a finite intersection of ineducible ideals.
(iii) Every ideal in R is a finite intersection of ineducible ideals.
(ii) Every ideal in R is a finite intersection of ineducible ideals.
(ii) Every ideal in R is a finite intersection of ineducible ideals.
(iii) Every ideal is $X \neq f$ if must have a maximal element (R North)
say $\partial C \in \Sigma$ is this work element.
Since ∂C is not ineducible (otherwork $\partial C \notin \Sigma$), then
 $\partial C = f \cap C$ with $\partial C \not = f + \partial C \not = C$ ideals.
Now $f, C \notin \Sigma$ by maximality of $\partial C \not = S$
 $f = f_{1} \cap \cdots \cap f_{K}$ with f_{1}, C_{1} ineducible
 $C = C_{1} \cap \cdots \cap f_{K}$ with f_{1}, C_{2} ineducible
 $C = C_{1} \cap \cdots \cap f_{K} \cap C_{1} \cdots \cap C_{K} \notin \Sigma$ (note 1)
(include: $\Sigma = \emptyset$.
(2i) Tix $\partial C \not = R$ ineducible ideal.
Working with $\tilde{K} = R/\partial$, we may assume ^(a) is an ineducible ideal
 Let $xy \in (o)$ is $xy = 0$ e $y \neq 0$. We want to prove $x^{1=0} = y^{1} \notin (0)$ is $xy = 0 = y \neq 0$. We want to prove $x^{1=0} = f^{1} \oplus f^{2} \oplus$

Since (0) is iniducible and (y)=10), we include (xⁿ)=10), ie xⁿ=0 as required D This lemma is referred to as "Primary Decomposition for Noetherian rings." We will image back to this next Time.

53. Characterization of primary ideals:
Fix R Northerian a commutative. Let
$$\mathcal{A} \subseteq \mathbb{R}$$
 be an ideal
Write $\mathcal{A} = 9, \dots, 99$ (a primary decomposition of \mathcal{A})
Interactible (=> primary)
Let $\mathcal{B}_{i} = C(9_{i})$ be the corresponding prime ideals.
Lemma: If $\mathcal{B} \subsetneq \mathbb{R}$ is a prime ideal, minimal assume
the set of prime ideals containing \mathcal{A} , then $\mathcal{B} = \mathcal{B}_{i}$ for some
i=1,...,l
 \mathcal{B}_{i} By Theorems of Prime Avoidance (Lecture 17), we
have $9, \dots, 994 \subseteq \mathcal{B}$ => $9_{i} \subseteq \mathcal{B}$ for some i .
Hence $\mathcal{B}_{i}=\Gamma(9_{i}) \subseteq \Gamma(\mathcal{B})=\mathcal{B}$, but
 $\mathcal{A} \subseteq \mathcal{B}_{i} \subseteq \mathcal{B}$ a minimal => $\mathcal{B}_{i}=\mathcal{B}$.
June

Def. The minimal primes of R are the preme ideals of R, minimal with anafect to inclusion

Corollary: There are may finitely many minimal grimes over any given ideal OC of a Noetherian ring R. (as min primes MR)