Lecture 28 : Modules oren PID's II
Recall: Last time we talled abort hee modules soer a PID R $\Pi \cong \bigoplus_{t \in I} R \quad$ in a bases $\left.3 e_{i}\right\}_{c \in I} \quad($ geverates $+L I / R)$

- Defired Torrim elemento : $x \in M$ with $\operatorname{Arn}(x) \neq(0)$ $M_{T_{r}}=\{$ Trsim elements $\}$ subuudule of M . M: is Train hee nodule $\left.\Leftrightarrow \Pi_{\text {Tor }}=30\right\}$
Therem 1: Sise of the basis is unique $=\operatorname{rank}(t)$
Therem 2: F bee novelule see PID \& M subourdule, then M is hee $\& \operatorname{rank}(M) \leq \operatorname{ronk}(F)$
Toxion her $+\mathrm{Fg} \nRightarrow$ her is pueral R
Pusporition: M is $f g$ oue a PID \& M is troion heee \Rightarrow hee. Eis fitting of fg midules oser PiDs:
Therem 3: Fix R a PID and M a $f . g R$-module. Then, M / M ter a hee R-module. Funtherowne, there exists a bue submondule F of M with $M=M_{\text {tor }} \oplus F$.
The ranke of F is uniquely ditermined by M.
Prool: We fust show that $\bar{M}=M / M_{\text {Tor }}$ is Torsion pree.
$L c_{\bar{x}} \in \bar{\Pi}$ and $b \in R$ with $b \bar{x}=0 \mathrm{~m} \bar{\Pi}$. Then $b x \in M_{\overline{\operatorname{cor}}}$ so $\operatorname{Amn}(b x) \neq(0)$. But $\quad \operatorname{Ann}(b x)=(c) \quad c \neq 0$
gives $(b c) x=0$ in M.
So either $b c=0$ or $\quad x \in \Pi_{\text {Tor }}(\Rightarrow \bar{x}=0)$

- M is Fg , so \bar{M} is fg
- $\bar{\Pi}$ is Fg \& Torsion hue. By P copsiticn, it is pee. as an R-module. It's rank is uniquely determined by M.
- To hind F, we need a lemma afflied to $\varphi: M \rightarrow M / M T_{0}$ Lemma: Insider $M \& M^{\prime}$ Tiv modules ores a P ID R. Assume M^{\prime} is hue \& let $f: M \longrightarrow M^{\prime}$ be a suyfectexe homomorphism of R-modules. Thun, there exists a free sabmurdule N of M such that
(1) $f_{I_{N}}$ induces an isomurphisin $f_{I_{N}}: N \xrightarrow{\sim} M^{\prime}$.
(2) $M=N \oplus \operatorname{ker} f$.

Proof: Pick a basis h $\left.3 x_{i}^{\prime}\right\}$ i fo M^{\prime}. For each i, let $x_{i} \in M$ with $f\left(x_{i}\right)=x_{i}^{\prime}$.
Take $N=\left(x_{i}: i \in I\right)$
Claim : $\left.3 x_{i}: i \in I\right\}$ is l_{i}
Bf/ $\sum_{\substack{i \in I \\ \text { time }}} a_{i} x_{i}=0 \leadsto \sum_{\substack{i \in I \\ \text { finite }}} a_{i} \underbrace{f\left(x_{i}\right)}_{=x_{i}^{\prime}}=0 \Rightarrow a_{i}=0$
Conclusion. N is fee with bases $\left\{x_{i}\right\}_{i \in I}$.

- Clearly: $f / N: N \longrightarrow M^{\prime}$
- For $x \in M$, we can find $a_{i} \in R$ (finitely many $\neq 0$) with $f(x)=\sum_{\substack{i \in I \\ \text { finite }}} a_{i} x_{i}^{\prime}=\sum_{\substack{i \in I \\ \text { rite }}} a_{i} f\left(x_{i}\right)$
so $x-\sum_{\substack{i \in I \\ \text { finite }}} a_{i} x_{i} \in \operatorname{ker} f$. Thees, $M=N+\operatorname{kerf}$
- N nker $f=(0)$ because $\left.3 x_{i}^{\prime}\right\}_{i \in I}$ is a basis.

So $f_{1 N}: N \xrightarrow{\sim} M^{\prime}$ \& $M=N \oplus \operatorname{Ker} f$.
S2llassification of modules seer PID's.
Fix R a PID
D4: We say $p \in R$ is a prime element if $(0) \neq(\rho)$ is a prime $\begin{aligned} & \text { ideal } \& / R .\end{aligned}$

- We select upresentatises for the prime elements of R, modulo units.
Examples: $\mathbb{Z} \leadsto$ proitixe pine venters
$K_{[x]} \rightarrow$ manic ineductble polynomials (L T(F)=1)
Def An Expment of $\Pi=$ an element in $\operatorname{Aun}(\Pi) \backslash\{0\}$
Notation: We say $x \in M$ is a p-tocsin print if $p^{n} \cdot x=0$ for some $n \geqslant 1$. (equine, $\exp (x)$ is a procter power of p)
Def: Given $a \in R, 30\}$, we wite $\prod_{a}=\operatorname{ker}\left(\underset{x \longmapsto a \cdot x}{a \cdot} \prod_{x}\right)$ Def: $A_{n} R$-module M is cyclic if $M \simeq R /(a)$ fr some a.

Obs: If $a \neq 0$, we can write $a=u p_{i,}^{n_{1}} \cdots p_{i r}^{n_{r}} p_{i}$ primu ups (use punary deconf of (a))

$$
u i \in z_{\geqslant 0}
$$

$$
u \in R^{x}
$$

Def: A p-module $M \quad\left(M=M_{p^{n} \text { 位men }}\right.$ s $)$ is of tyfe $\left(p^{r_{1}}, \ldots, p^{r_{s}}\right)$ if it is ismasthic to $\prod_{i=1}^{s} R /\left(p_{i}^{r_{i}}\right)$
If P is understord, we say M has Tyse $\left(r, \ldots, r_{s}\right)$

- Mis a torsin module if $\Pi=M_{\text {ur }}$.

Classification Thurem 1: If $(O) \neq M$ is a Fg Torsim nodule soer a PIDR, then: $M=\underset{P_{i} \|^{\text {mine }}}{\oplus} \quad \prod_{p_{i}^{n_{i}}} \quad$ for suitable $n_{i} \in \mathbb{Z}$
Ferthermire : $M p_{i}^{n_{i}} \cong R /\left(p^{\left(v_{i}\right)}{ }^{(\oplus)} \cdots()^{\left(p^{v}\right)}\right)$ with $n_{i}=v_{1}^{(i)} \geqslant v_{2} \geqslant \ldots \geqslant v_{s} \geqslant!$ \& the seperence $\left(v_{i}\right)$ is minquely determined by $M \& p$
Prool: Finst we discass the decompsition of M as a denct seem of P-toscion modelues.
Claim 0: Il has a nomsers exprent a.
$\rho F /$ Write $M=\left(x_{1}, \ldots, x_{n}\right)$. We know $\operatorname{Ann}\left(x_{i}\right)=\left(a_{i}\right) \neq(0)$ becouse M is 2 Torsinn midule.
Take $a=a_{1}, a_{n} \neq 0$ then $a M=\{0\}$.

- Since $M \neq 30\}, \quad a \notin R^{x}$ so $A_{n}(M) \neq(0), R$. WLOG, assume $A_{m}(M)=(a)$, so $M=M_{a}$.
- Assume $a=b c$ with $(b, c)=1$. Pick x, y with $1=x b+y c$

Maim: $\Pi=\Pi_{b} \oplus \Pi_{c}$
SF). $\Pi_{b} \cap M_{c}=\{0\}$ since $m \in \Pi_{b} \cap \Pi_{c}$ free

$$
\left.\begin{array}{l}
b m=0 \\
(m=0
\end{array}\right) 1 \cdot m=(x b+y c) \cdot m=0+0=0
$$

-((S) Pick $m \in M$ Them

$$
\begin{aligned}
m & =(x b+y c) m \\
& =\underbrace{x b m}_{=m_{1}}+\underbrace{y c m}_{=m_{2}} \in \Pi_{c}+\Pi_{b}
\end{aligned}
$$

$$
c m_{1}=\underset{=a}{x c b} m=x \cdot 0=0 \quad a>m_{1} \in \pi_{c}=m_{1}
$$

$$
b m_{2}=y \underset{\neq a}{\substack{=a \\ b c m}}=y \cdot 0=0 \quad \leadsto m_{2} \in M_{b}
$$

- We factor a as: $a=u p_{i 1}^{u_{i}} \ldots p_{i r}{ }^{n_{r}} \quad u \in R^{x}$ (ria Primary decamp of (a)).
CASE 1: $r=1$
Then $a=u p^{n}$ \& $M=M_{a}=\Pi_{p^{n}}$
CASE 2: $r>1$
Then $a=b c$ with $b=u p_{i_{1}}^{n_{i}} \quad \& c=p_{i 2}^{n_{2}} \cdots p_{i r}^{n_{i r}}$
Maim. $(b, c)=1$
PF/ $(b, c)=(d) \quad(R$ is a $P(B)$ so $b=d x$

$$
c=d y
$$

But $b=u p_{i 1}^{m_{i 1}}=d x$ frees $d=w_{p_{i}}^{s_{i 1}}$ with $0 \leq s_{i 1} \leq u_{i 1}$ w $\in R^{x}$ (primary decamp are unique f/ $P D_{s}$)
Also $c=p_{i 2}^{n_{i 2}} \cdots p_{i 1}^{n_{i r} r}=d y$ frees $d \equiv v p_{i}^{s_{i 2}} \cdots p_{i r}^{s_{i r}} \quad r \in R^{x}$
But $p_{i 1}^{s_{i}}, p_{i 2}^{s_{i 2}} \ldots p_{i r}^{s_{i 2}}$ are coprime, so only, poem is $s_{i j} \geqslant 0$ il $d \in R^{x}$.

By on Claim $1 \quad M_{=}=M_{b} \oplus M_{c}$.

- From lases 182 , we induct on the mender of pierce factors in $b \& c$ to show

$$
M=\Pi_{p_{i_{1}}^{m_{i}}} \oplus \cdots \oplus M_{p_{i_{r}}^{n_{i r}}}
$$

Next, we show that $M_{p_{i j} n_{i j}}$ admits the claimed dcanporition. It suffices to fores in p-Eosin modules. Uniqueness will be nomen - Assemere $M=M_{p n}$ with n minimal. Notice $\Pi=\pi / p \Pi$ is a k-vip with $k=\frac{R}{(P)}$ (imaPID $\underset{\&}{\text { p } \neq 0}$ inc $\Rightarrow m$ mel) $P \Pi$

- Since M is $\mathrm{fg}: \operatorname{dim}_{k} \bar{M}<\infty$
- We argue by induction m dim $\bar{\pi}$, using the following lumina of the inductive step
Leman: Assume $A_{\text {un }}(M)=\left(\rho^{n}\right)$ \& pick $x \in M$ with $A_{m n}(x)=\left(\rho^{n}\right)$ Cuisidu the res $0 \longrightarrow(x) \longrightarrow M \xrightarrow{\pi} N \neq 0$
Then (1) $\operatorname{dim}_{k} N / \frac{N}{\rho}<\operatorname{dim}_{k} \frac{\pi}{p \pi}$
(2) π admits a section (assumumy N decompress as expected)

3F/ Next time.
We will complete the pool of the Classificatim The in the next lecture.

