Lecture 40 : Modules oren PIDIV-Smith Normal Forms
Recall: Defined Torrim elements : $x \in M$ with $\operatorname{Arn}(x) \neq(0)$
$M_{\text {Tr }}=\{$ Torsion elements γ ruburducle of M
. M: is Train hue module $\left.\Leftrightarrow \Pi_{\text {Tor }}=30\right\}$

- Pick upesentatises of s pine elements in $\frac{b}{b}(p) \neq 0$ pine idea $p_{i} k_{i \in I}$
- (p) $\neq 0 \mathrm{minil}$ idea

Classification Thurem 1: If $(O) \neq M$ is a Fg Torsim module sorn a $P \mid D R$, then: $M=\underset{P_{i} \|^{\text {mine }}}{\oplus} \quad \prod_{p_{i}^{n_{i}}} \quad$ is suitable $n_{i} \in \mathbb{Z}$ with $\Pi_{P_{i}^{n_{i}} \neq\{0\}}$.
Ferthumire: $\Pi p_{i}^{n_{i}} \cong R /\left(p^{(i)}\right)(\oplus) \cdots\left(\pm R /\left(p^{v_{s}^{(i)}}\right)\right.$
with $n_{i}=v_{1}^{(i)} \geqslant v_{2} \geqslant \ldots \geqslant v_{s} \geqslant!$ \& the reference $\left(v_{i}\right)$ is miquerly determined by $M \& p$.
sc Classificatum va:
We can marnange the $M_{P_{i}}{ }_{j}^{(i)}$ factors to sine an alternative classification:
Classification Thu va: If $0 \neq \Pi$ is a Fg torsim module rec a $P \mid D R$, then $\pi \simeq R /\left(q_{1}\right) \oplus \cdots R /\left(q_{r}\right)$
where $q_{i} \neq 0, q_{i} \in R^{x} \forall i$ \& $q_{r}\left|q_{r-1}\right| \cdots \mid f_{1}$,
Ferthemure, the sequence of ideals $\left(q_{1}\right), \ldots\left(f_{r}\right)$ is uniquely determined by the above auditions.

PF) Write $M=\bigoplus_{i=1}^{1} M_{p_{i} u_{i}}$

$$
\begin{aligned}
& \Pi_{p_{i}^{n}} \cong R \\
& v_{i}^{(i)} \cong \cdots \geqslant p_{s i}^{(i)} \geqslant \oplus\left(v_{i}^{(i)} \geqslant 1\right.
\end{aligned}
$$

- We complete with $\gamma_{j}^{(i)}=0 \quad \forall j>s_{i}$ so that all decomp hase the same menuter of semmonords. $S=\max _{1 \leqslant i \leq \mathrm{c}}\left\{s_{i}\right.$ it - We ugroup by colexmes:
(t)

$$
\begin{aligned}
& \mu_{p_{1}^{n_{1}}}= \begin{array}{r}
R \\
\vdots \\
\left.\vdots p_{1}^{\nu_{1}^{(i)}}\right) \\
M_{p_{r}^{n_{r}}}
\end{array}=\oplus \\
& R / \rho_{r}^{\nu_{r}^{(r)}} \\
& \cong \\
& \cong R /\left(q_{1}\right)
\end{aligned}
$$

Whene $q_{i}=\prod_{j=1}^{s} p_{j} \nu_{i}^{(s)} \quad\left(\right.$ Here $\left.p^{0}=1\right)$

SF) CRT P_{1}, \ldots, P_{r} are distenct copperies so, after ighring the 0 -sermmonds n (LHS), we got painwise offinie idials $\left(p_{1}^{v_{i}^{(1)}}\right), \ldots\left(p_{r}^{v_{i}^{(r)}}\right)($ Lecture 23)

$$
\text { - }\left(q_{i}\right)=\bigcap_{\substack{l \\ \text { pic } \\ \text { unique factoring. }}}^{r}\left(p_{j}^{\nu_{i}^{(j)}}\right)=\prod_{\substack{b=1 \\ \text { Lederuzz }}}^{r}\left(p_{j}^{\left.\nu_{i}^{(j)}\right)}\right)
$$

- Iso in claim follows hum CRT (Lecture 17)

By construction $q_{r}\left|q_{r-1}\right| \cdots 1 q_{1}$ because $\gamma_{i}^{(j)} \geqslant p_{i+1}^{(j)} \forall j$
Uniqueness $A_{n n}(\Pi)=\left(q_{1}\right) \quad$ Pick $x \in \Pi$ with $A_{\text {mu }}(x)=q$.
m) $\operatorname{Anm}(\eta /(x))=\left(q_{2}\right)$ (ese Lemuna hum page z 2), ate.
\&2. Structure Thu:
Recall the following statement hm Lecture 28:
Lemma: Insider $M \& M^{\prime}$ Tiv modules ores a P ID R. Assume M^{\prime} is here \& let $f: M \longrightarrow M^{\prime}$ be a sujfectese homomorphism of R-modules. Then, there exists a free sabmurdule N of M such that
(1) $f_{I_{N}}$ induces an isomurphison $f_{I_{N}}: N \xrightarrow{\sim} M^{\prime}$.
(2) $M=N \oplus \operatorname{Ker} f$.
$\left(\begin{array}{ll}N=\left(x_{i}: i \in I\right) & r\left(x_{i}\right)=x_{i}^{\prime} \\ \left\{x_{i},\right\}\end{array}\right)$ $\left\{x_{i}^{\prime}\right\}$ basis fin n^{\prime}
We'll use this to prone the following statements?
Structure Thun Assume R is a $P I D$ and $M=$ fo free R-mid of rent n. Fix $0 \neq N \subseteq M$ submodule. Then \exists basis $\left\{e_{1} \ldots e_{n}\right\}$ of M and $a_{1}, \ldots, a_{r} \in R \cup\{0\}$ such that
(1) $a_{1}\left|a_{2}\right| \cdots \mid a_{r}$
(2) $\left\{a_{1} e_{1}, \ldots a_{r} e_{r}\right\}$ is a basis for N

Thoof We know N is kee of rauk $\leq n$. (Therem 2 , Lecture 27)

- Weargue by inductim mu:
- Base case: $n=1$ so $\Pi=R$ \& $N=(a) \quad a \neq 0$.
- Inductin Step Cusider $\left.\tilde{J}_{\mathcal{K}}=3 T(N): T \in \operatorname{Hmm}_{R}(M, R)\right\}$
- Each $T(N)$ is a sulanodule of R (ie an idial)
- $F \neq \phi \quad\left((0) \in \mathcal{F}_{e}\right)$
. R Netherian $\Rightarrow \exists m \in \mathcal{Y}$ maximel element.
- Claim $m_{R P_{1 D}}=(\alpha) \neq(0)$.

SH/ $\Pi \simeq R^{n} \xrightarrow{\pi j} R$ projection to jth coply.
$N \neq(0)$ in R^{n} so $\exists\left(x_{1} \ldots x_{n}\right) \in N$ with smen $x_{j} \neq 0$

$$
\Rightarrow \quad \pi_{s}(N) \ni x_{j} \neq 0
$$

. $\exists T_{0} \in H_{m_{R}}(M, R) \& v \in N$ with $T_{0}(v)=\alpha$.

- Claimz $\forall T \in H m_{R}(M, R) \quad \alpha \mid T(v)$. (ie $\left.T_{(v)} \in(\alpha)\right)$

Pf/ Write $(\alpha, T(v))=(d) \quad(R$ is a P/ $\Delta)$

$$
\begin{aligned}
& d=a \alpha+b T(v)=a T_{0}(v)+b T(v)=\left(a T_{0}+b T\right)(v) \\
& \text { So }(d)=(\alpha) \text { by maximality } \quad \operatorname{Hm}_{R}(H, R) \\
& \Rightarrow \alpha \mid T(v) .
\end{aligned}
$$

- Apply the Claim to each $\pi_{j} \Rightarrow \alpha \mid \pi_{j(v)} \forall j$ This. $v=\left(\alpha b_{1}, \alpha b_{2}, \ldots, \alpha b_{m}\right)$ fo $b_{1}, \ldots b_{m} \in R$. Write $w=\left(b_{1}, b_{e}, \ldots, b_{m}\right)$ so $v=\alpha w$.

$$
\Rightarrow \alpha=T_{0}(v)=\alpha T_{0}(w) \quad \underset{\text { Rdmain }}{\Rightarrow} T_{0}(\omega)=1
$$

Claim 3: $\quad M=\left(\operatorname{Ker} T_{0}\right) \oplus R \omega \quad \Rightarrow$ rank $\operatorname{Ker} T_{0}=n-1$
$N=$ (NnkerTo) $\oplus R v$
Bf / Use Lemma for $T_{0}: M \longrightarrow R \quad T_{0}(\omega)=1$

$$
\left.T_{0}\right|_{N} N \longrightarrow R \alpha \simeq R \quad T_{0}(v)=\alpha
$$

- wank $\left(\operatorname{Ker} T_{0}\right)=n-1 \quad$ \& $N \cap K e r T_{0} \subseteq \operatorname{Ker} T_{0} \quad$ sulbuurdule $\neq(0)$ (otherwise $r=1$ a a ce an dore)
\Rightarrow By $1 H \exists\left\{e_{2}, \ldots, e_{n}\right\}$ basis of Kerb \& $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{r} \in R$ with $\left\{a_{2} e_{2}, \ldots, a_{r} e_{r}\right\}$ basis fo NnkerTo.

$$
a_{2}\left|a_{3}\right| \ldots \mid a_{r} .
$$

- To finish, set $a_{1}=\alpha, \quad e_{1}=\omega$

Claim 4: a_{1} / a_{2}.
SG/ Dime: $T \in \operatorname{Hm}_{R}(M, R)$ via $T\left(e_{1}\right)=1=D\left(e_{2}\right) \&$

$$
T\left(e_{i}\right)=0 \quad \forall i>2 .
$$

Then $\alpha=T(\alpha \omega) \in T(N)$ so $(\alpha) \subset T(N)$
By maximality of α : $T(N)=(\alpha)$
But $a_{2}=T(\underbrace{a_{2} e_{2}}_{\in N})$ so $a_{2} \in(\alpha)$, il $\alpha \mid a_{2}$. .

$$
\begin{array}{cll}
\text { Exauples:(1) } M=\mathbb{Z} \times \mathbb{Z} & N_{1}=((0,1),(2,0)) & e_{2}=(0,1) \\
e_{1}=(1,0) \\
\text { (1) } N_{2}=((0,1),(2,2)) \quad M=\mathbb{Z}^{2} & a_{1}=1, a_{2}=2 \\
e_{1}=(0,1), e_{2}=(1,1) \quad a_{1}=1, a_{2}=2 . &
\end{array}
$$

\$2. Equivalence of matrices
Def: Assumes R is a commutative rime \& $A, B \in \operatorname{Mat}_{m \times n}(R)$. We say A is equirialut to B (write, $A \sim B)$ if $\exists P \in G L(R)$ with $B=$ QA

- Char : \sim defines an equivalence relation on $\operatorname{Mat}_{m \times n}(\mathbb{R})$

Q: Can we find nice representatives for each class?
A: Depends on R
Example: $R=\mathbb{K}$ field, then $A \sim\left[\begin{array}{cc}r & \begin{array}{c}1 \\ 0-1\end{array} \\ \hline 0-1 & 0 \\ \hline 0 & 0\end{array}\right] r=\operatorname{rank}(N)$ (ria now s column reductive)
Thusem: Assume R is a PID, then every mater $A \in \operatorname{Mat}_{\substack{ \\m \times n}}(R)$ is equinalut to a matrix

$$
\begin{aligned}
& S=\left(\begin{array}{cc|c}
d_{1} & d_{2} & 0 \\
0 & 0 & 0 \\
\hline 0 & d_{r} & 0 \\
\hline 0 & \text { with } & d_{1}\left|d_{2}\right| \\
\text { (innamiant factors) }
\end{array}\right. \\
& S=S_{\text {with }} \text { Nrual From of } A .
\end{aligned}
$$

Name $=S=S_{\text {smith }}$ Normal From of A.
If/ Consider the R-linear mop $T_{A} \cdot R^{n} \xrightarrow{A} R^{n}$

- $T_{A}\left(R^{n}\right) \subset R^{m}$ is a submodiule of a her raker nod $\Rightarrow T_{A}\left(\mathbb{R}^{n}\right)$ is her of rank $\leqslant m$
- By Structure $\|_{m} \exists$ basis $B^{\prime}=\left\{e_{1} \ldots, e_{m}\right\}$ \& $R^{m} \& d_{1} \ldots d_{r} \in R$ s.t $\left\{d e_{1}, \cdots, d_{r}\right\}$ is a basis for $T_{A}\left(R^{n}\right)$ \& d diditi i_{i}

Pick f_{i} with $T_{A}\left(f_{i}\right)=\operatorname{die} e_{i}(i=1, \ldots, r) \& \operatorname{let} N=\left(f, \ldots, r_{r}\right)$ $V_{i e w} T_{A}: R^{n} \longrightarrow T_{A}(N)$ with baas $\left\langle d_{i} e_{i}\right\rangle_{i=1}^{n}$. By the Lemma, we set

$$
R^{n}=N \oplus \operatorname{ker} T_{A} . \quad N \text {, Ger } T_{A} \text { bee of complem. rank }
$$

- If $\left\{F_{r+1} \ldots, F_{n}\right\}$ is a basis fokker T_{A}, thun:
$B=\left\{f_{1} \ldots, f_{n}\right\}$ is a basis fr R^{m} \&

$$
\begin{aligned}
& {\left[T_{A}\right]_{B B^{\prime}}=\left[\begin{array}{cc|c}
d_{1} & 0 & 0 \\
0 & d_{r} & 0 \\
\hline 0 & 0
\end{array}\right] \quad d_{1} \ldots d_{r}} \\
& P^{-1}=\text { Champ of basis fum }\left\langle e_{1} \ldots, e_{n}\right\} T_{0} B
\end{aligned}
$$

$P^{-1}=$ Chang of basis fum $\left\{e_{1} \ldots, e_{n}\right\}$ to B

$$
Q=\square B^{\prime} t_{0}\left\{e_{1}, \ldots, e_{m}\right\}
$$

