Lecture 31: Ratimal normal fris, Jordan canonical from
In the lest 2 lectures, we saw 2 ways to classify um-zero finitely generated Torsion modules over a PID R :
Classification Three 1: If (o) HM is a Fg Torsion module over a PID R, then:

with $r_{i}=v_{1}^{(i)} \geqslant v_{2} \geqslant \ldots \geqslant v_{s} \geqslant$! the reference $\left(v_{i}\right)$ is uniquely determined by $M \& p_{i}$.
Classification Thu vi: If $0 \neq \Pi$ is a Fg Torsim module rec a $P \mid D R$, then $\pi \simeq R / q_{q_{1}} \oplus \cdots\left(q_{\left(q_{r}\right)}\right.$
where $q_{i} \neq 0 \quad q_{i} \in R^{x} \forall i$ \& $q_{r}\left|q_{r-1}\right| \cdots \mid f_{1}$,
Furthenure, the sequence of ideals $\left(q_{1}\right), \ldots,\left(q_{r}\right)$ is uniquely determined by the above auditions.
TODAY's GOAL: Frees n the case of $\mathbb{K}[x]$-modules, where \mathbb{K} is a field of chavacteristrico (in char p, perfect fields will be meed (see Math 6(12))
si. $\mathbb{K}[x]$-modules:
Q: What is a $\mathbb{K}[x]$ - module?
A. a \mathbb{K}-vector space V

- multiplication by X defines a map $x \cdot: V \underset{m}{\longrightarrow} \longrightarrow \cdot m$
- x. is \mathbb{K}-limar simce $\mathbb{K}[x]$-is cmmutatire

Cudude: $\mathbb{K}[x]$-module \longleftrightarrow a \mathbb{K}-vector space $V+\varphi \in E_{n d}(V$.$) .$
Frum now on, we assume V has $\operatorname{dim}_{1 k} V=n<\infty$.

$$
\text { So } \varphi \longleftrightarrow A \in M_{n \times n}(\mathbb{K}) \quad \begin{gathered}
\text { (matuix of the limeor } \\
\text { thonst we a fired basiis) }
\end{gathered}
$$

$m D_{\text {fime a map }} \Psi \mathbb{K}[x] \longrightarrow \mathbb{K}[A] \subset E_{n d_{\mathbb{K}}}(V)$

$$
P(x) \longmapsto P(A)
$$

- What is $P(A)$? If $v \in V$, then:

$$
\begin{aligned}
& P=\sum_{i=0}^{N} a_{i} x^{i} \text { ms } P(A)(v)=\sum_{i=0}^{N} a_{i}\left(A^{i}\right)(v) . \\
& \underbrace{A_{0}^{\prime \prime}(v o A}_{i \text { times }}
\end{aligned}
$$

- Ψ is a ring hammorflisen.
- Im $\Psi=$ sabrimg of End (V) geuerated by $A \approx \mathbb{K}$.
- $\operatorname{Ker} \Psi=$? Idal of $K[x]=$ PID so
$\leadsto \operatorname{ker} \Psi=(f)$ for sime $f \in \mathbb{K}[x]$
Lemma: $\operatorname{Ker} \Psi \neq(0)$:

ψ is also \mathbb{K}-limear map. If Ker $\Psi=(0)$, then $\mathbb{K}[x] \subseteq \mathbb{K}[A] \quad$ Cuts!
int din'l fondin'l
Name: $f \neq 0$ us take $q_{A}(x)=\frac{1}{\operatorname{LT}(f)} f$ (munic) $q_{A}(x)=$ mimimal prlynmial of Λ ste k.
§2. Cyclic case:
Proporition Asseeme we hore $v \in V$ s.t. $V=k[x] \cdot v$, ie V is gemerated by $\left.3 v, A v, A^{2} v, \ldots.\right\}$ (oren $\left.\mathbb{K}\right)$ (V iscyclic). Then,
(1) dyg $\left(q_{A}\right)$ is minimal integer $d \geqslant 0$ s.t
$\left\{v, A_{v}, \ldots, A^{d} v\right\}$ is ℓd, ie:
- $\left\{v, A v, \cdots, A^{d-1} v\right\}$ is l_{i}
.$\left\{v, A v, \ldots, A^{d} v\right\}$ is ℓd.
(2) Furthermure, in this situatim $\left.3 v, A v, \ldots, A^{d-1} v\right\rangle$ is a basis for V.

3F/ Since V is $h . \operatorname{dim}^{\prime} l$ we hase $\left\{v, A v, \ldots, A^{d} v\right\}$ ed fs smed
(2) If d is minoimal, then $\left.3 v, A r, \ldots, A^{d-1} v\right\}$. is $l i$.

We daim $A^{d} v \in \operatorname{Span}\left(v, A_{v}, \ldots, A^{d-1} v\right)$ \& by inductum $m k \geqslant 0 \quad A^{d+k} v \in$

So $\left.3 v, A v, \ldots, A^{d-1} v\right\}$ is a basis for V.
(1) Write a montrinial l.d relation:

$$
a_{0} v+a_{1} A v+a_{2} A^{2} v+\cdots+a_{d-1} A^{d-1} v+a_{d} A^{d} v=0
$$

Since $a_{d} \neq 0$, we con asseme $a_{d}=1$. Call: $h_{(x)}=\sum_{i=0}^{d} a_{i} x^{i}$
We daim $h=q_{A}$
(1) $h \in \operatorname{ker} \Psi\left(h(A)_{(v)}=0, h(A)(A v)=A h(A)_{(v)}=0\right.$,

$$
h(A)\left(A^{l} v\right)=A^{l} \underbrace{h(A)(v)}_{=0}=0 . m>\left.h(A)\right|_{V} ^{=0}=0)
$$

$\Rightarrow h=q_{A} \dot{g} \quad f>g \in \mathbb{K}[x]$
(2) If dy $q_{A}<$ dy $h=d \Rightarrow$ We would hare a defendency uelation ir $\left.3 v, A v, A^{2} v, \ldots, A^{d-1} v\right\} \quad$ Cutr !
Conclude: dog $q_{A}=\operatorname{dgh}, q_{A} \mid h$ \& beth are monic $\Rightarrow q_{A}=h$.

Corollany 1: If V is cyclic as a $\mathbb{k}[x]$-mordule and $f_{A}=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$, then in the basis $\left.B=3 v, A v, \ldots A^{d-1} v\right\}$ we have

Coollayy 2: If V is ydic, then: $V \simeq \frac{K_{[x]}}{q_{\Lambda(x)}}$ (as \mathbb{K}-r-s.)
(Why? $\quad K_{[x]} \xrightarrow{\varphi} V \quad$ is suyj $+\operatorname{kec} \varphi=\left(q_{A}(x)\right)$) $f(x) \longmapsto f(v)$
Mroores $f_{A}(x)$ is independent of the choice of generater or for V = an innariaut of V .

§3 Nm-cyclic case:
Q: What haffers in the nen-cyclic case?
A: Classification Thurems fo fo Trisim nurdules / $\mathbb{K}[x]$.
Obs: $\operatorname{dim}_{k} V<\infty$, then V is a Torsin module gren $\mid k[x]$. $\left(q_{A}(A)=0\right.$ indimorphisen, maxing $\left.q_{A}(A)(\omega)=0 \forall \omega \in V\right)$
Thorem l, $V K$-retrir space \& $A \in E_{n d}(V) \quad A \neq 0$. Then, V admits a dinect sem decompositim:

$$
V=V_{1} \oplus \cdots \oplus V_{r}
$$

where wech v_{i} is a cyclic $K_{[x]}$-modale with inraviants $q_{i} \neq 0$, satisfying $q_{1}\left|q_{2}\right| \cdots \mid q_{r}$
Futhermore, the sepenence $\left(q, \ldots, q_{c}\right)$ is uniquely determined by $V \& A$ \& $q_{r}=q_{A}$.
IF/ Classitication Theorem vz gires the gi's. Unipueness also bollows Te fimish: $\operatorname{Anu}(v)=\left(q_{A}\right) \ni q_{r}$ simce $q_{i} \mid q_{r} \quad \forall_{i}$
But $q_{r} \mid q_{A}$ simce $q_{A}(x) \cdot V_{r}=0$ so $q_{r}=q_{A}\left(\begin{array}{c}\text { (bsh } \\ \text { muic) }\end{array}\right.$
Coollany: V admuits a basis B with

$$
[A]_{B B}=\left[\begin{array}{ccc}
C_{q_{1}} & & 0 \\
0 & \ddots & \\
& & \sqrt{C_{q r}}
\end{array}\right]
$$

$C_{q_{i}}=$ cmpanim matuin fos each q:

This is know as the cational wrmal from for A.
$\left(A \sim R N F(A)\right.$ where $A \sim C$ iff $\exists Q \in G L_{n}(\mathbb{K})$ with $A=Q^{-1}(Q)$
3F/ Pick v_{i} fenerater for $\left.V_{i} \leadsto B_{i}=3 v, A v, \ldots, A_{i}^{d_{i-1}}\right\}$ with $d_{i}=\operatorname{dog} q_{i}$. Then, take $B=B, \cup \cdots \cup B_{r}$.

Q: What abseit alternative Classification Thm?
We factor $q_{A}(x)=p_{1}^{n_{1}}(x) \cdots p_{S}^{n_{s}}(x)$ into distinct prime
powers ($p_{i}(x)=$ monic \& imducible)

- The pi's an the mepresentatires of prime elewents in $\mathbb{K}[x]$
- Erengthing is monic, so no unit is reeded in the factorigateing

Therenz: $V k$-rector space \& $A \in E_{n d}(V) \quad A \neq 0$. Then, V admits a direct sem decomposition:

$$
V=V_{P_{1}^{n_{1}}} \oplus \cdots \oplus V_{p_{r}^{n} c}
$$

Furthermore, each $V_{p_{i}{ }_{i}}$ can be express as a direct sum of submudules ismarphic to $k[x]$] (with $n_{i}=\nu_{1}^{(i)} \geqslant \cdots \geqslant \nu_{s_{i}}^{(i)}$) $\left(\mathrm{P}_{i}^{(1)}\right.$
§4. Jordan canonical from:
In the special case when $\mathbb{K}=\mathbb{K}$, chars $(E g \mathbb{K}=\mathbb{C})$ then write $p_{i}=(x-\alpha)$ for sine $\alpha \in \mathbb{K}$.
Each $\frac{\| k[x]}{\left(p_{i}\right)^{m}}$ piece gives a cyclic suburodule $W_{p i, i m} \neq(0)$ of V
of dimension m
Thorium 3: $W_{p_{i}, m}$ has a basis B oven \mathbb{K} such that

$$
\left[\left.A\right|_{w_{p i m}}\right]_{B}=\left[\begin{array}{lll}
\alpha_{i} & & \\
1 & \ddots & \\
& \ddots & \\
& & \left(m \times \alpha_{i}\right.
\end{array}\right] \quad=J(\alpha, m) \quad l
$$

BF/ $W_{p_{i} ; m}$ is generated by some $\omega \in V$.
Claim: $B=\left\{\omega,(A-\alpha) \omega, \cdots,(A-\alpha)^{m-1} \omega\right\}$ is a basis. - LI: $(x-\alpha)^{m}$ is the minimal polynomial of $W_{p_{i}} m$. Any dependency will yield a pryanuial g with $\left.g(A)\right|_{W_{p i n}}=0$.
Span: Pnoporitim hun early on + binomial Theorem.

- Span: Proporitim hum early on. + binomial Theorem.
(Altenatirs $|B|=\operatorname{dim} W_{\text {pima }}$.)
- Note: $(A-v)^{k+1}(\omega)=(A-\alpha)\left((A-\alpha)^{k}(\omega)\right)$ yields

$$
A(A-\alpha k)^{k+1}(\omega)=(A-\alpha)^{k+1}(\omega)+\alpha(A-\alpha)^{k}(\omega)
$$

Also $(A-v)^{m}(\omega)=0 \quad$ ince $q_{\left.A\right|_{p_{i}, n}}=(x-\alpha)^{m}$.
so $\left[A \mid w_{p, i m}\right]_{B}$ has the desined shape.
Corollany: giren $V \& A$ with $q_{1}=p_{1}^{n_{1}} \ldots p_{r}^{n_{n}}, \exists B$ basis fo V with.

$$
[A]_{B}=\left[\begin{array}{cc}
A_{1} \mid & 0 \\
\hline 0 & \ddots \\
\hline A_{c}
\end{array}\right] \quad \text { block diagual decons. }
$$

Furthermire for $P_{i}=\left(x-\alpha_{i}\right)$, we hase.

- This bbloce decmpsition is the Jrdan canmical frem of the mative A.

