Lecture 32: Geural Jordan cannical frums - Cayly-Hamit Toe
Recall: Last time we Talled absent mimimal prlymuinals of matrices $A \in \operatorname{Mat}_{n \times n}$ (\mathbb{K})
Difined $\bar{\Psi} \mathbb{K}[x] \longrightarrow \mathbb{K}[A] \subset E_{n d} \mathbb{K}^{\left(\mathbb{K}^{n}\right)}$

$$
\begin{aligned}
& P(x) \longmapsto P(A) \\
& \sum_{i=0}^{N} a_{i} x^{i} \longmapsto \sum a_{i} A^{i} \quad\left(A^{0}=I d .\right)
\end{aligned}
$$

- Ψ rimg hameuriplustran, \& \mathbb{K}-limear
- $\operatorname{Ker} \psi \neq(0)$ mo $\operatorname{Ker} \psi=\left(q_{A}\right)$ qu manic in $K_{[x]}$

Obs: $q_{G-1 G G}=q_{A}$ fra any $\left.G \in G L_{n} \mid \mathbb{K}\right)$ =niminual ply of A

- If \mathbb{K}^{n} is cyclic ($\exists v \in \mathbb{K}{ }^{n}$ with $\left.3 v, A v, A^{2} v, \ldots\right\}$ generating \mathbb{K}^{n}), then $q_{\Lambda}=x^{n}+a_{n-1} x^{n-1}+a_{0}$
(1) $\exists Q=\left\{v, A v, A^{2} v, \ldots, A^{n-1} v\right\}$ basis with

$$
[A]_{B B}=\left[\begin{array}{ccc}
0 & & -a_{0} \\
1 & 0 & -a_{1} \\
\ddots & \vdots & \vdots \\
0 & \ddots 1 & -a_{d-1}
\end{array}\right]=c_{q_{A}} \frac{\text { cmpanion matux }}{\text { plymuial } q_{A}} \text { pr }
$$

(2) If $\mathbb{K}=\overline{\mathbb{K}}$, choo $\mathbb{K}=0$ and $q_{A}=(x-\alpha)^{n}$, then \mathbb{K}^{n} is uclic \& $B=\left\{v,(A-\alpha I)(v), \ldots,(A-\alpha I)^{n-1}(v)\right\}$ is a basis for sme $v \in \mathbb{K}^{n}$

$$
[A]_{B B}=\left[\begin{array}{llll}
\alpha & & & 0 \\
1 & 1 & 0 \\
0 & & i & \alpha
\end{array}\right]=J(\alpha, n) \quad \text { (Jrdau block) }
$$

In the woncyslic case, we break \mathbb{K}^{n} into cyclic $\mathbb{K}(A)$-moverles
(1) $\mathbb{K}^{n}=V_{1} \oplus \ldots \oplus V_{r} \quad \mathbb{K}_{[A]} \subset V_{i}=\left(K^{n}\right)_{q_{i}}$ cyclic $B=B_{1} \cup \cdots \cup B_{r} \quad\left(B_{i}\right.$ bais ofs $\left.V_{i}\right)$ with

$$
[A]_{B B}=\left[\begin{array}{ccc}
c_{q_{1}} & & 0 \\
0 & \ddots & \overline{c_{q r}}
\end{array}\right] \text { with } q_{1}\left|q_{2}\right| \ldots \mid q_{r} .
$$

(2) $\mathbb{K}=\overline{\mathbb{K}}$ har $\mathbb{K}=0$

$$
q_{A}=\prod_{i=1}^{s}\left(x-\alpha_{i}\right)^{m_{i}}
$$

m) $V=V_{1}^{\prime} \oplus \ldots \oplus V_{s}^{\prime}$ with $q_{A_{V_{i}}}=\left(x-\alpha_{i}\right)^{m_{i}}$子 bases $B_{1}^{\prime}, \ldots, B_{s}^{\prime}$ of $V_{1}^{\prime}, \ldots, V_{s}^{\prime}$ with $B=\int_{i=1}^{5} B_{i}^{\prime}$
$[A]_{B}=\left(\begin{array}{ccc}A_{1} & & 0 \\ \hdashline & \ddots & \\ 0 & & \boxed{A_{s}}\end{array}\right)$
Ferthermore, $A_{i}=\left[\left.A\right|_{V_{i}{ }^{\prime}}\right]_{B_{i}^{\prime} B_{i}^{\prime}}$ can be fuether decompsed as:

$$
A_{i}=\left[\begin{array}{ccc}
J\left(\alpha_{i}, m_{1}^{(i)}\right) & 0 \\
0 & \ddots & \sqrt{J\left(\alpha_{i}, m_{s i}^{(i)}\right)}
\end{array}\right] \begin{aligned}
& m_{i}=m_{i}^{(1)} \geqslant \cdots \geqslant m_{s_{i}}^{(i)}
\end{aligned} \begin{aligned}
& \text { with } \\
& \\
& \\
&
\end{aligned}
$$

(Jordan canmical frem)
Q:What ise can we say?
si Geural Jrdan from
Obs: Writhen additirdy, we get:

$$
[A]_{\overline{q B}} D+N
$$

- $\Delta=$ diagmail pait. $[A]_{\overline{g e}} D+N . q_{D}=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$
- $N=$ milpotent $\left(N^{\operatorname{din} V}=(1)\right.$) $n>q_{N}=x^{l}$ prsmel .
- $[A]_{B B}, D \& N$ commute

There is a more general ression of Jordan caranical frems, that work over perfect fields (char 0 is ewough).
Thuorem: Let \mathbb{K} be a yerfect field, $n \in \mathbb{Z}_{\neq 1}, A \in M_{a t_{n \times n}}(\mathbb{K})$ Then $\exists!A_{s}, A_{N} \in \operatorname{Mat}_{n \times n}$ IK) st
(1) $A=A_{S}+A_{N}$. (Jerdan-Cheadlly decamporition of A)
$\left\{\begin{array}{l}(2) \quad A_{S} \& A_{N} \text { an prlynomial in } A . \\ \left(2^{*}\right)\left[A_{S}, A\right]=\left[A_{N}, A\right]=\left[A_{S}, A_{N}\right]=\Phi .\end{array}\right.$
(3) A_{S} is sumisimple \& A_{N} is milptent.

- A_{N} milpotent means $q_{A_{N}}(x)=x^{l}$ fos sim l
- As semisimple muans $\left(q_{A s}, g_{A s}^{\prime}\right)=1$.
(Altematisely $\quad q_{A_{s}}=\prod_{i=1}^{r} f_{i}(x) \quad f_{i}=\begin{gathered}\text { distinct munic) } \\ \text { ineducibles. }\end{gathered}$
Easy case: fA $=(x-x)^{d}$ fs

$$
\leadsto A_{N}=\left(A-\lambda I_{n}\right) \quad \& A_{S}=A-A_{N}
$$

- $A_{\&} A_{N}$ commuite, $A_{\&} A_{S}$ commite, $A_{N} \& A_{S}$ commute $/$
- AN milprtent $\left(A_{N}\right)^{d}=\left(A-\lambda I_{n}\right)^{d}=\mathbb{1}$ iu Mat $n_{n \times 4}(\mathbb{K})$
- Uain 1: $q_{A_{s}}=(x-\lambda) \quad\left(\sim o\left(q_{A_{s}}-q_{A_{s}}^{\prime}\right)=1\right)$

$$
A-A_{N}-\lambda I_{n}=A-\left(A-\lambda I_{n}\right)-\lambda I d=0
$$

- $x-\lambda$ is ineducible so $\operatorname{ker} \psi=(x-\lambda) \quad\left(\operatorname{ker} \Psi \neq F_{[x]}\right]$
- Fo $\mathbb{K}=\bar{K}$, see HWII (semisimple = diagnaligable)
- Fr peefect fields, you need Galois Thun.
- Uniqueness:

$$
\begin{aligned}
& A_{S}+A_{N}=A_{S}^{\prime}+A_{N}^{\prime} \\
& A_{S}-A_{S}^{\prime}=A_{N}^{\prime}-A_{N}
\end{aligned}
$$

- $A_{N}^{\prime}=P_{(A)}, A_{N}=Q(A)$ so $A_{N}^{\prime} \& A_{N}$ cumurite
$\Rightarrow \Lambda_{N}^{\prime}-\Lambda_{N}$ is milpotent
- $A_{S} \in R(A), A_{S}^{\prime}=T(A)$ so they comuute.

Fact: Two diagmalizable matuas that anumite can be diaqunalized simuntaneresly. So $A_{s}-A^{\prime}$ s is semismple Only one semisimfle and milpstent matix $=\mathbb{D}$.
\$2 Characteristic plymmial:
Find V an n-tim'l K-recter space \& $A: V \longrightarrow V$ a k-limen map. We have

$$
\begin{aligned}
K[x] & \longrightarrow K[A] \\
X & \longmapsto A
\end{aligned}
$$

Def: We define the characteristic polynmial of A as

$$
x_{A}=\operatorname{det}\left(x I_{n}-A\right)
$$

Obs: If $A \sim C$, maving $C=G^{-1} A G$ f $>G \in G L_{n}(\mathbb{K})$, them, $\quad x_{c}=x_{A}$.
Inded:

$$
\begin{aligned}
x_{c} & =\operatorname{det}\left(x I_{n}-G^{-1} A G\right) \\
& =\operatorname{det}\left(G^{-1}(x I-A) G\right)=\operatorname{det} G^{-1} \operatorname{det}\left(x I_{n}-A\right) \operatorname{det} G \\
& =x_{A}
\end{aligned}
$$

Lemma : If $\varphi: \mathbb{K} \longrightarrow \mathbb{K}^{\prime}$ is a Anomourflisen of rimps between 2 fields, then: $\chi_{\varphi(M)}=\varphi\left(X_{M}\right)$
(Here, φ extends to $\varphi: \mathbb{K}_{[x]} \longrightarrow \mathbb{K}_{[x]}^{\prime}$)
Proof: Exercise.
Therem. (Cayley-Hamilton) $\quad x_{A}(A)=0$ is $\left.q_{A} \mid x_{A}\right)$
Prod: We'll use the Ratimel Normal from of A.

$$
\begin{aligned}
& {\left.[A]_{B B}=\left[\begin{array}{llll}
c_{q_{1}} & & \\
& \ddots & \\
& \ddots & \\
& & c_{q_{r}}
\end{array}\right] \quad \quad q_{1}\left|q_{2}\right| \ldots \right\rvert\, q_{r}=q_{A} .} \\
& \operatorname{det}\left(x I_{n}-A\right)=\operatorname{dt}\left[\begin{array}{cccc}
\left.\frac{x I_{n}-C_{q_{1}}}{} \right\rvert\, & & 0 \\
& \ddots & \ddots & \\
0 & & \boxed{x I_{n}-C_{q r}}
\end{array}\right] \\
& \text { so }{ }_{\substack{\text { blecte } \\
\text { decemp }}}=x_{c_{q_{1}}} \cdots \underbrace{x_{q_{r}}}_{\text {"q }_{q_{r}}} \text { by Lunuma below. }
\end{aligned}
$$

Lemua: $\quad x_{c_{G}}=f$ for any manic polymenial $f \in \mathbb{K}[x]$.
Pf/ By indectern n digree of f

$$
\begin{aligned}
& \text { - } \operatorname{deg} f=1: \quad x_{C_{x+a_{0}}}=\operatorname{let}\left(x+a_{0}\right)=x+a_{0} \quad C_{x+a_{0}}=\left[-a_{0}\right] \\
& \text { - deg } f=m \text { m } f=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}
\end{aligned}
$$

$\mathscr{L H}\left(x I_{m}-C_{f}\right)$ is computed by colemen expassin:

$$
\begin{aligned}
& =x x_{c_{\frac{f-a_{0}}{x}}}+(-1)^{2 m-2} a_{0} \\
& { }_{14}=x \frac{f-a_{0}}{x}+a_{0}=f(x)-a_{0}+a_{0}=f(x)
\end{aligned}
$$

- Alturnatire Prool of CH:

To show: $X_{A}(A)(v)=0 \quad \forall v$ in V.

Pick any $v \in V$ \& consider $V^{\prime}=K[A] \cdot v$ that is, the rector space spared by $\left.3 v, A v, \Lambda^{2} v, \ldots \ldots\right\}$.

- We know we can find d with $\left.B^{\prime}=3 v, A v, \ldots, A^{d-1} v\right\}$ a bans fo V^{\prime}. Assume $\operatorname{dem} V=n$.
- We extend B^{\prime} to a basis B of V. Then we get

$$
[A]_{B B}=\left[\begin{array}{c|c|c}
A_{n-2} \\
A_{1} & A_{2} \\
\hline 0 & A_{3}
\end{array}\right] \quad \text { where } A_{1}=\left[\begin{array}{ccc}
0 & 0 & -a_{0} \\
1 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & \ddots & -a_{d-1}
\end{array}\right]
$$

So $A_{1}=C_{q_{A_{V^{\prime}}}}$
Then using the same block decomposition, we st.

$$
x_{A}=x_{A_{1}} \cdot x_{A_{3}} \cdot \underset{\substack{\uparrow \\ \text { Lemma }}}{q_{A_{V^{\prime}}}} \cdot x_{A_{3}}=x_{A_{3}} q_{A_{/ V}}
$$

So

$$
\begin{aligned}
x_{A}(A)(v) & =\left(x_{A_{3}}(A) \cdot q_{A / V^{\prime}}(A)\right)(v) \\
& =x_{A_{3}}(A)(\underbrace{q_{A \mid V^{\prime}}(A)(v)}_{=0\left(v \in V^{\prime}\right)})=0
\end{aligned}
$$

Obs: The result is twee for matier ore any comustatiere ring R We can show this by proving the prlemminal

$$
x_{A}(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \text { where } b_{i} \in \mathbb{Z}\left[a_{i j}\right]
$$

ravishes on $A=\left(a_{i j}\right)$ inside a dense pen set of Mat ${ }_{n \times n}(R)$ We can pick diagnalizath matrices as sech set.

- Alcermatire Inoof: HW II Problem 18.

