Lecture 33: Mrem Caylyy-Hamiltm, Basics on Limear Algebra Recall: Last time we discessed Cayly-Hamiltor of $A \in$ Mat $_{n \times n}$ (IK) Theremil. (Cayley-Hamilton) $\quad x_{A}(A)=0$ is $\left.q_{A} \mid X_{A}\right)$ We sam two proof :
(1) Via Ratimal Normal froms
(2) Show: $\left.x_{A}(A)(v)=0 \quad \forall v \in \mathbb{K}^{n}, 30\right\}$ nia $[A]_{B B}=\left[\begin{array}{ll}2 \\ A_{1} & \Delta_{2} \\ 0 & A_{3}\end{array}\right]$

$$
B=\underbrace{\left\{v, A_{v} \ldots A^{d-1} v\right\}}_{l_{i}(d \text { mol })} \cup B^{\prime} \quad \text { s use } x_{A}=x_{A_{1}} \cdot x_{A_{3}} \text {. }
$$

Key: $X_{C_{q}}=q$ frany $q \in \mathbb{K}[x]$ munic $\begin{gathered}\left(C_{p}=\text { cumpanim }\right. \\ \text { matiox }(f q)\end{gathered}$
${ }_{53}$ Cosergunces of Cayly-Hamilton:
Corollary 1: Gisen $A \in \operatorname{Mat}_{\text {uxu }}(\mathbb{K}), \exists C \in \operatorname{Mat}_{\text {uxn }}(\mathbb{K})$ with

$$
\begin{aligned}
& A C=C A=\operatorname{det}(A) I_{n} . \\
& B f / q_{0}=X_{A}(0) \\
&=\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A
\end{aligned}
$$

$C H$ gines $X_{A}(A)=A^{n}+a_{n-1} A^{n-1}+\cdots+a_{0} I_{n}=0$

$$
\begin{aligned}
& \Rightarrow-a_{0} I_{n}=A(\underbrace{\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} I_{n}\right.}_{C^{\prime}})=C^{\prime} A \\
& (-1)^{n+1} \operatorname{det} A I_{n}^{\prime \prime} I_{n}
\end{aligned}
$$

So $C=(-1)^{n+1} C^{\prime}$ works.
Obs: $C^{\top}=\operatorname{cof}(A)=\operatorname{cofactor}$ matix of A with

$$
(\operatorname{cof}(A))_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{(i, j)}\right)
$$

(We'll suthis in a puture lecture)
$\rightarrow A$ with now is col j umoud.

EX: $n=2 \quad A=\left[\begin{array}{ll}a b \\ c & d\end{array}\right]$

$$
\begin{aligned}
x_{A}=\operatorname{det}\left(\begin{array}{cc}
x-a & -b \\
-c & x-d
\end{array}\right) & =(x-a)(x-d)-b c \\
& =x^{2}-\underbrace{(a+d)}_{\tilde{H}(A)} x+\underbrace{a d-b c}_{\operatorname{det} A}
\end{aligned}
$$

$$
\begin{aligned}
& x_{A}(A)=A^{2}-(a+d) A+(a d-b c) I_{2} \\
& =\left[\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & c b+d^{2}
\end{array}\right]-\left[\begin{array}{cc}
(a+d) a & (a+d) b \\
a+d) c & (a+d) d
\end{array}\right]+\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& C=(-1)^{3}\left(A-(a+d) I_{2}\right)=-\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{cc}
a+d & 0 \\
0 & a+d
\end{array}\right] \\
& =\left[\begin{array}{cc}
+d & -b \\
-c & +a
\end{array}\right]=\cot \left(\left[\begin{array}{cc}
a b \\
c & d
\end{array}\right]\right)^{\top}
\end{aligned}
$$

Next: Fix R a comuitatise ring.
Corollany 2: Gisen $A \in \operatorname{Mat}_{u \times n}(R), \exists C \in \operatorname{Mat}_{n \times n}(R)$ with

$$
A C=C A=\operatorname{det}(A) I_{n} .
$$

3F/If C^{\top} is the cofacter matixx : A, then $A C=C A=\operatorname{det}(A) I_{n}$ This yields a prognomial edutity on $\mathbb{Z}\left[a_{i j}\right]$. So t's valid our any camuutatiere ring!

- This Corollay givtes the equral ressim of CH (see HW II) Theoremi (CH) Frany R camm ring \& $A \in M_{n \times n}(R)$, we have $X_{A}(A)=0$.
Prool: Show $x_{A}(A)(v)=0 \quad \forall v$ by using copactor identity on $B=x I_{n}-\Delta$.

Corollary 3: $A \in$ Mat $_{n \times n}(\mathbb{R})$ is insectith if and may if de $A \in \mathbb{R}^{x}$ FF/ \Leftrightarrow Is char ingate $(A B)=\operatorname{det} A \operatorname{det} B, \quad \& \operatorname{det} I_{n}=1$. (\Leftrightarrow) Use $A C=C A=(\operatorname{det} A) I_{n}$ fume Corollary 2

Then $A^{-1}=(\operatorname{det} A)^{-1} C$.
Our lest unsequence is Nakayama's Lemma:
Nakayama's l emma Fix (R, m) local conuutotice ring and let M be a finitily generated R-muddle.

If $m M=M$, then $M=0$.
Sf/ Write $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$
Then $m M=\left\{\sum_{j=1}^{n} c_{j} x_{j} \quad c_{j} \in m\right\}$
In particular $x_{i} \in M=m M \rightarrow \theta$:

$$
x_{i}=\sum_{j=1}^{n} c_{i j} x_{j} \quad \text { with } c_{i j} \in M \text {. }
$$

Then $A=I_{n}-\left(c_{i j}\right) \in \operatorname{Mat}_{n \times n}(R)$ satisfies

$$
\begin{aligned}
A\left[\begin{array}{c}
x_{1} \\
\dot{x_{n}}
\end{array}\right] & =\left[\begin{array}{c}
x_{1} \\
\dot{x}_{n}
\end{array}\right]-\left(c_{i j}\right)\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]-\left[\begin{array}{l}
\sum_{j=1}^{n} c_{i j} x_{j} \\
\sum_{j=1}^{n} c_{n j} x_{j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
\end{aligned}
$$

Pick Faith $F A=A F=(\operatorname{let} A) I_{n}$. Then:

$$
(u t A)\left[\begin{array}{l}
x_{1} \\
\dot{x}_{n}
\end{array}\right]=F A\left[\begin{array}{l}
x_{1} \\
\dot{x}_{n}
\end{array}\right]=F\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

$$
\Rightarrow\left\{\begin{array}{c}
(\operatorname{ld} A) x_{1}=0 \\
\vdots \\
(\operatorname{lt} A) x_{n}=0
\end{array}\right.
$$

But $\operatorname{det} A=\operatorname{det}\left(I_{n}-\underset{\left(C_{j}\right)}{\left(C_{m}\right)}\right) \in 1+m$, so it's a uni ty.
\Rightarrow Include: $x_{1}=\cdots=x_{n}=0$ so $\left.M=30\right\}$.
(See HWL2. Nr other versing of Nakayama's Lemma.)
§2. Lima Algebra Basics:
$F i x \mathbb{K}$ a field. Next, we usiew the basic operations in rector spaces ser \mathbb{K} :

Tinct sums, Homs, Dual Vector Spaces
Next time: Tensor products, Symmetric \& Alturmatimg (or Exterior)
\$2.1 Vector Spaces, Cimon Maps: products.
Iffimition: A vector space oren K is a set V together with 3 operations

$$
\begin{aligned}
\left.+: \begin{array}{rl}
v \times V & \longrightarrow V \\
\left(v_{1}, v_{2}\right) & \longmapsto v_{1}+v_{2} \\
I K \times V & \longrightarrow V \\
\quad & V \longrightarrow V \\
(z, v) & \longmapsto z v
\end{array}\right\} \begin{array}{l}
v \text { abd l } \\
\text { the }
\end{array} \\
\quad \text { (scalar multiplication) }
\end{aligned}
$$

satisfying: $\left.\begin{array}{rl} & z\left(v_{1}+v_{2}\right)=z v_{1}+z v_{2} \\ \cdot & \left(z_{1}+z_{2}\right) v=z v_{1}+z_{2} v\end{array}\right\}$ (Distributive)

- $z_{1}\left(z_{2} v\right)=\left(z_{1} z_{2}\right) v \quad$ (Asssuatise)
- $1_{K} \cdot v=v$.

$$
\forall z, z_{1}, z_{2} \in \mathbb{K}, \quad \forall v, v_{1}, v_{2} \in V .
$$

Obs: V is a \mathbb{K}-module

Def: A \mathbb{K}-liner map between 2 rector spaces is a group dimorphism $f: V \longrightarrow W$ st $f(z \cdot v)=z f(v) \quad \forall z \in \mathbb{K}$.

Obs: Same definition as homomisphison of $I K$-undules. $\operatorname{Hom}_{K}(V, W)=$ set of all liner maps fun V to W
Prop: $H_{\text {mu }}^{\mathbb{K}}$ ($\left.V, W\right)$ is a \mathbb{K}-rector space:
SF/○ $\forall r_{1}, r_{2} \in H_{m}(v, w), r_{1}+f_{2}$ is defined as

$$
\left(f_{1}+f_{2}\right)(v) \quad=f_{1}(v)+f_{2}(v) \quad \forall v \in V
$$

(Easy to cluck: this new map $f_{1}+f_{2}: V \longrightarrow W$ is \mathbb{K}-linin)
(2) Zeus map $0 \in H_{M_{\mathbb{K}}}(V, W) \quad 0: v \longmapsto 0 \quad \forall v \in V$.
(3) Scalar multiplication: $\forall z \in \mathbb{K}, f \in H_{m_{\mathbb{K}}}(V, w)$:

$$
(z f): V \longrightarrow W \quad(z f)_{(v)}=z f(r)
$$

(Easy to cluck: this mew map $z \cdot f: V \longrightarrow W$ is K-linear) Distubitive a Associative Laws follow fum Those in W; $1 \cdot f=f$ is clear
Note: We nee really used Thesecter space stuncture of V in the definition of the rector space structure on $H_{m}(V, W)$. The same would work To make Homs et (X, W) a rector space when X is any set \& W is a \mathbb{K}-veter space.
Remark: If V \& W are firiti-dimensimal, with $d m n=n, d m W=m$, then $H_{M_{K}}(V, W)$ can be identified with $M_{m \times n}(I K)$. This involves choosing baser $\left.\left.B_{v}=3 v_{i}\right\}_{i=1}^{n} \& B_{w}=3 w_{j}\right\}_{j=1}^{m}$ fr $V_{\&}$ W, respectively. Then $f \in H_{m}(V, W)$ can be expressed as $f\left(v_{i}\right)=\sum_{j=1}^{m} a_{j i} w_{j} \leadsto \sim A=\left(a_{j i}\right)_{\substack{j=1, \ldots, m \\ i=1, \ldots, n}} \in \prod_{m \times n} a_{m \times n}(\mathbb{K})$

Furthermore $[f(v)]_{B_{W}}=A[v]_{B_{v}} \quad[]_{B_{W}} \in \mathbb{K}^{m}$
Notation $A=[f]_{B_{v} B_{w}}$.
§2.3 Bases:
We use the same definition as pee-mudules
Def: B is abasis fo V if $V \simeq \bigoplus_{V \in B} \mathbb{K}$.
$\left\{\begin{array}{l}-B \text { is limoorly independent } \\ \cdot B \text { spans } V\end{array}\right.$

- Equivalently: ser r in V can be written uniquely as a limeorcmel. of elements in B
- Equivalently: B is maximal linecolly independent set (HWKZ)

Obs: By HWIO-Pablemz, any 2 maximal limioaly indy sets hare The same cardinality. So dem $=$ size of any basis for V.
The usual techniques to find a basis in a spanning set, $\& a$ basis fIN by extending a linearly independent set hold in any dimension (see HW12). The proof uses Zoon's Lemur:
Thurum 3: Let V be a rector space ser a field K with $V \neq\{0\}$. (1) Let S be a $l i$ subset of V. Then there exists a basis B If V with $S \subset B$
(2) Let Γ be a generating set for V (ie a spamming set). Them, there exists a basis B of V with $B \subset \Gamma$.
\$2.2 Direct Sums:
Let V_{1} \& V_{2} be two rector spaces.
If: $V_{1} \oplus V_{2}$ denotes the rector space with undulyenig sit the cartesian product $V_{1} \times V_{2}$ \& the following structure:
$\left.\begin{array}{l}\text { (1) }\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+v_{1}^{\prime}, v_{2}+v_{2}^{\prime}\right) \\ \text { (2) }-\left(v_{1}, v_{2}\right)=\left(-v_{1},-v_{2}\right)\end{array}\right\} \begin{aligned} & \text { same as } 10 \\ & \text { groups }\end{aligned}$
(3) $z\left(v_{1}, z_{2}\right)=\left(z v_{1}, z v_{2}\right)$

This is the same definition as the one for mordeles / R.

- Limoumops a dinct sums:

If $F_{1}: V_{1} \longrightarrow W_{1}$

$$
\begin{aligned}
\text { If } f_{1}: v_{1} \longrightarrow w_{1} \\
f_{2}: V_{2} \longrightarrow w_{2}
\end{aligned} \text { an K-limar maps, then we build a mew map }
$$

If $v_{1}, v_{2}, w_{1}, w_{2}$ are define demsusimes $\left(\operatorname{dim} w_{i}=n_{i}, \operatorname{diom} w_{i}=m_{i}\right)$ - $B_{v}=\left(B_{v_{1}} \times 30 \varepsilon\right) \cup\left(\left\{0\left\{\times B_{v_{2}}\right)\right.\right.$ is a basis is $V_{1} \oplus V_{2}$

$$
\begin{aligned}
& \left.\left.\qquad B_{w}=\left(B_{w_{1}} \times 30\right\}\right) \cup(30\} \times B_{w_{2}}\right)-w_{1} \oplus w_{2} \\
& \&[f]_{B_{v} B_{w}}=m_{m_{1}}\left[\begin{array}{l|c}
{\left[F_{1}\right]_{B_{v_{1}} B_{w_{1}}}^{n_{1}}} & 0 \\
\hline 0 & {\left[f_{2}\right]_{B_{v_{2}} B_{w_{2}}}}
\end{array}\right] \in \operatorname{Mat}_{\left(m_{1}+m_{2}\right) \times\left(n_{1}+n_{2}\right)}^{(\mathbb{K})^{n_{2}}}
\end{aligned}
$$

Obs: Same will work to thee modules oren a common ring with finite rank.
\$2.3 Duel Vector Spaces:
Let V be a \mathbb{K}-rector space.
Def The dual of V, denoted by V^{*}, is defined as:

$$
V^{*}=\operatorname{Hom}_{\mathbb{K}}(V, \mid K)
$$

Thurem4: If V is firite-dimunsimal, then $\operatorname{dim} V^{*}=\operatorname{dim} V$. Pf/ Let $\left\{v_{i}\right\}_{1 \leq i \leq m}$ be a basis fo V. Deprive $v_{i}^{*} \in V^{*}$ by

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad\left(v_{i}^{*}\left(\sum_{j=1}^{m} a_{j} v_{j}\right)=a_{i} \in \mathbb{K}\right)\right.
$$

Claim: $B^{*}=\left\{u_{i}^{*}\left\{\right.\right.$ isis a basis fo V^{*} : (dual basis)
(1) B^{*} spans:

Given $\mathrm{f}: V \rightarrow \mathbb{K}$ dimer, it's determined uniquely by its values at B :

$$
f\left(\sum_{i=1}^{m} a_{i} v_{i}\right)=\sum_{i=1}^{m} a_{i} \frac{f\left(v_{i}\right)}{=b_{i}}
$$

Then: $f=\sum_{i=1}^{m} b_{i} v_{i}^{*}$

$$
\left[f\left(v_{j}\right)=\sum_{i=1}^{m} b_{i} v_{i}^{*}\left(v_{j}\right)=\sum_{i=1}^{m} b_{i} \delta_{i j}=b_{j}\right]
$$

(2) $\frac{B^{*} \text { is } l_{i}}{\sum_{i}^{m}}$

$$
\sum_{i=1}^{m} \underbrace{a_{i} v_{i}^{*}}_{\varepsilon_{\text {scalar in } K}}=0: V \rightarrow \mathbb{K} \Rightarrow 0=\left(\sum_{i=1}^{m} a_{i} v_{i}^{*}\right)_{\left(v_{j}\right)}=a_{j} v_{j}
$$

A Claim fails when V is infimite-dimensional (1) fails, (2) holds)
Example: Pick $V=\mathbb{K}^{\oplus \mathbb{N}} \quad \mathbb{K}$-v.space with basis $\left.\} e_{k}: k \in \mathbb{N}\right\}$
$\exists f: V \longrightarrow \mathbb{K} \quad$ limen mop with $f\left(e_{k}\right)=1 \forall k$.

$$
f\left(\sum_{\substack{r \in \mathbb{N} \\ \text { finite }}} a_{i} e_{i}\right)=\sum_{\substack{i \in N \\ \text { finite }}} a_{i} .
$$

But $\left.\quad f \notin \operatorname{Span} \mid e_{k}^{*}: k \in \mathbb{N}\right)$.
Obs: Similarly if R is a commutative ring, and M is a free R-mid, we candepire $M^{*}=H_{m_{R}}(M, R)$. It turns ret that M^{*} read. not be pe if $\pi k(M)$ is infinite. (Eg $M=\mathbb{Z}^{\oplus \mathbb{N}}, M^{*}=\prod_{\mathbb{N}} \mathbb{Z}$ net) . If $\operatorname{rk}(M)<\infty, M^{*}$ is free $a k\left(M^{k}\right)=a k(M)<\infty$ (Same proof works!)

