Lecture 34: Dual VectrSpaces \& Tensor products
Recall. Last time wereniewed basics a \mathbb{K}-vector spaces.

- Bases = generating cts $+l . i$

Equir: maximal $l i$ subsets

- dem $V=$ size of a basis (cardinality), well-efined HW10 P2.

Thorium: Let V be a rector space stree a field \mathbb{K} with $V \neq\{0\}$.
(1) Let S be ali subset of V. Then there exists a basis B for V with $S \subset B$
(2) Let Γ be a generating at for V (ie a spamming est). Them, there exists a basis B of V with $B \subset \Gamma$.
Def The dual of V, is $V^{*}=\operatorname{Hom}_{\mathbb{I K}}\left(V, K_{i}\right)$
Theorem : If V is firite-dimensimal, then $\operatorname{dim} V^{*}=\operatorname{dim} V$.
SF/ Let $\left\{v_{i}\right\}_{1 \leq i s m}$ be a basis fr V. Defier $v_{i}^{*} \in V^{*}$ by

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} m B^{*}=3 v_{1}^{*}, \ldots, v_{m}^{*}\right\} \text { is a basis for } V^{*}
$$

§1. Double Duals:
Remark: WCV subspace, then V / W is a rector space and $(V / w)^{*} \leftrightarrows\left\{\xi \in V^{*}|\xi|_{w}=0\right\}$
Propnitim $V \xrightarrow{\varphi}\left(V^{*}\right)^{*}$
is limen sing.
$\begin{aligned} v \longmapsto \varphi_{(v)}: V^{*} & \longrightarrow \mathbb{K} \\ f & \longmapsto f(v)\end{aligned}$
(alt notation to

$$
\varphi(v)(t)=\langle v, t\rangle
$$

φ is sunjecture $\Leftrightarrow \operatorname{dim} V<\infty$.

Pnoof: . $\varphi(r) \in\left(V^{*}\right)^{*}$ is char

- $\left.\varphi_{\text {is limar (1) }} \varphi_{\left(v+v^{\prime}\right)}(f)=f_{\left(v+v^{\prime}\right)}=f_{(v)}+f_{\left(v^{\prime}\right)}=\left(\varphi_{(v)}+\varphi_{\left(v^{\prime}\right)}\right)\right)_{(v)}$

This is the for all f. so $\varphi_{\left(v+v^{\prime}\right)}=\varphi_{(v)}+\varphi_{\left(v^{\prime}\right)}$ in $\left(V^{*}\right)^{*}$.
(2) $\varphi_{(z v)}(f)=f_{(z v)}=z f(v)=z(\varphi(v)(f))=(z \varphi(v))(f)$

This is the frall f, so $\varphi(z v)=z \cdot \varphi(z)$ in $\left(V^{*}\right)^{*}$.

- φ is injectire ($\operatorname{ker} \varphi=30\}$)

$$
\varphi(v)=0 \text { mans } \varphi(v)(f)=0 \quad \forall f .
$$

If $r \neq 0$, then by Thuren 3 we can find a basis B fo V cith $r \in V$. $\Rightarrow 子 v^{*}: V \longrightarrow 0$ with $v^{*}(w)=\left\{\left.\begin{array}{ll}0 & w \in R, 3 v y \\ 1 & w=v\end{array} \quad \right\rvert\, \curvearrowright w \in B\right.$.
Then $\varphi(v)\left(v^{*}\right)=v^{*}(v)=1 \neq 0 \quad$ Cuth!
Conclude: $r=0, s \operatorname{ker} \varphi=30\}$.

- We sam $V \simeq V^{*}$ if dum $V<\infty$, so $V \simeq\left(V^{*}\right)^{*}$ gises the samn dimensin. By Rank-Nullity Therem: φ is senjeclest.
- If $\operatorname{dim} V=\infty$ let $B=\left\{v_{i}\right\}_{i \in I}$ be an infimite basis or V. Then $V=\left\{\sum_{i \in I} a_{i} v_{i}: a_{i}=0 \forall\right.$ but pimilaly many $\left.i\right\}$

$$
\begin{aligned}
& v^{*}=\left\{\sum_{i \in I} a_{i} v_{i}^{*}\right\} \supset F=3 \sum_{i \in I} a_{i} v_{i}^{*} \text { a } a_{i}=0 \text { freall } \\
&\text { bit pimitly many }\} \\
& L \text { mly }=\text { if } \operatorname{dim} v<\infty
\end{aligned}
$$

Uaim: Any linear from $\xi: V^{*} \longrightarrow K$ which ranishes on F connot be in $\operatorname{Im} \varphi$. unless $\xi=0$.

SF/ $F^{\prime}=\left\{\xi \in\left(V^{*}\right)^{*}:\left.\xi\right|_{F}=0\right\} \neq \phi$ (complete a basis of F to a boris for V^{*} \& take any $\xi=\omega^{*}$ fo ω among the added Set $H=3 v \in V: \varphi(v)_{\mid=0}=$
Then, $F^{\prime} \cap \operatorname{Im} \varphi \subset \varphi^{\prime}(H)=0$ so $\phi \neq F^{\prime}$ bor $C\left(V^{*}\right)^{*}, \operatorname{Im} \varphi$

Q: How to dialyze a map?
Lemma: If $G: V \longrightarrow W$ is a limes map, then $f^{*}: W^{*} \longrightarrow V^{*}$ defined by $f^{*}(\xi)=\xi 0 f: V \longrightarrow W \longrightarrow \mathbb{K} \quad \forall \xi \in W^{*}$ is \mathbb{K}-linear More precisely: $f^{*}(\xi)(r)=\xi(f(v)) \quad \forall v \in V, \forall \xi \in W^{*}$

§2 Bilimar Maps and Tenser Products:
Let V_{1}, V_{2}, W be 3 vector spaces sen \mathbb{K}
If: A bilinear map $f: V_{1} \times V_{2} \longrightarrow W$ is a set map which is liner m each ordinate, ie:

$$
\begin{aligned}
& \text { - } \forall v_{1} \in V_{1}: V_{2} \longrightarrow W \in \operatorname{Hm}_{K}\left(V_{2}, W\right) \\
& \text { - } \forall v_{2} \in V_{2} \text { : } \\
& w \longmapsto f(v, w) \\
& V \longrightarrow W \in \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, W\right) \\
& \omega \longmapsto F\left(\omega, v_{2}\right)
\end{aligned}
$$

Def: The Tenser product $V_{1} \otimes_{1 K} V_{2}$ is a rector space Together with a bilinear map

$$
\begin{aligned}
& v_{1} \times v_{2} \longrightarrow v_{1} \otimes_{1 k} v_{2} \\
& \left(v_{1}, v_{2}\right) \longmapsto v_{1} \otimes v_{2}
\end{aligned}
$$

L^{2} imduromprable tensor
satisfying the following universal property: $F \curvearrowright$ any rector sp . W ser IK and any bilinear map $f: V, \times V_{2} \longrightarrow W$, there exists a unique $\tilde{F}: V_{1} \otimes V_{2} \longrightarrow W$ linear map making the following diagram commute:
(*)

Ida: Build a space so that \tilde{f} is times.

Example: $V \otimes \mathbb{K} \cong V \quad v \otimes 1 \longleftrightarrow v . \quad \varphi(v, 1)=v \otimes 1=v$ IN $\tilde{f}(v)=h_{(v, 1)}$
Construction: $V_{1} \otimes \mathbb{K}_{2}$ is a rector space spanned by $B=\left\{\left(v, v_{2}\right): v_{1} \in v_{1}, v_{2} \in v_{2}\right\}$. quotiented by the subspace Hspanned by:
(1) $\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}, v_{2}\right)-z_{1}\left(v_{1}, v_{2}\right)-z_{1}^{\prime}\left(v_{1}^{\prime}, v_{2}\right)$
(2) $\left(v_{1} z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right)-z_{2}\left(v_{1}, v_{2}\right)-z_{2}^{\prime}\left(v_{1}, v_{2}^{\prime}\right)$

So in the quotient: $\left(z_{1} v_{1}+z_{1}^{\prime} v_{1}^{\prime}\right) \otimes v_{2}=z_{1}\left(v_{1} \otimes v_{2}\right)+z_{1}^{\prime}\left(v_{1}^{\prime} \otimes v_{2}\right)$.

$$
\left(v_{1} \otimes\left(z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right)=z_{2}\left(v_{1} \otimes v_{2}\right)+z_{2}^{\prime}\left(v_{1} \otimes v_{2}^{\prime}\right.\right.
$$

(11) $\varphi\left(z_{1} v_{1}+z^{\prime}, v_{1}^{\prime}, v_{2}\right) \stackrel{?}{=} z_{1} \varphi\left(v_{1}, v_{2}\right)+z_{1}^{\prime} \varphi\left(v_{1}^{\prime}, v_{2}\right)$ this is (1)!
(2') $\varphi\left(v_{1}, z_{2} v_{2}+z_{2}^{\prime} v_{2}^{\prime}\right) \stackrel{?}{=} z_{2} \varphi\left(v_{1}, v_{2}\right)+z_{2}^{\prime} \varphi\left(v_{1}, v_{2}^{\prime}\right)$

1. The map is bilimar because we defined $V_{1} \otimes_{I K} V_{2}$ as a quotient of rector spaces.
