Lecture 36: Canonical tensors \& Tun ser algebra
Last time: Defined $V \otimes_{\mathbb{K}} \mathbb{W}$ of a \mathbb{K}-vectrespaces V \& W via

Obs: We can define $\mathbb{X}_{i=1}^{n} V_{i}=V_{1} \otimes_{\mathbb{K}} V_{2} \otimes_{\mathbb{K}} \otimes_{\mathbb{K}} V_{n}$ by working with multilinan frons $V_{1} \times \ldots x V_{n} \longrightarrow W$ (linear on each factor, ones values on other factors are pred) \& an analogous universal property
(Take $\left(V_{1} \otimes \ldots \otimes V_{n-1}\right) \otimes V_{n} \&$ induct $\left(\begin{array}{c}\text { see } \\ 1 \Omega n=3 \\ 1 \Omega \\ n=3\end{array}\right.$
Prop: $\left.\begin{array}{rl}B_{v} & =\left\{v_{i}: i \in I\right\} \text { basis for } V \\ B_{w} & \left.=3 w_{j}: j \in J\right\} \quad W\end{array}\right\} \Rightarrow\left\{v_{i} \otimes w_{j}: i \in I \in J\right\}$ basis for V $V_{\mathbb{K}} W$
Prop (Hm-Tensor adjointivess) There is a natural map

$$
V^{*} \otimes w \xrightarrow{\Phi} \operatorname{Hom}(V, w) \text { with } \Phi(\xi \otimes w): v \longmapsto \underbrace{\xi(v)}_{\in \mathbb{K}} \cdot w
$$

Honorer, Φ is an ismorphism if V is pmite-dimensinal In general: Φ is always injectise.
HWI2: Many more properties of \otimes, including the rank of an element u $\operatorname{in} V \otimes W \quad\left(=\min \left\{r \mid u \sum_{r=1}^{r} v_{i} \otimes w_{i}\right.\right.$ fo some $\left.v_{i} \in V, w_{i} \in W_{i}\right\}$

S1. Connical-Tensor:
In particular, when $W=V$ \& d man $<\infty$, we use this to write a conical tensor in V^{*} (2) V, that is bases independent

Corollary: Let V be pinite dimensinal. Choose basis $\left\{v_{i} i_{1 \leq i s n}\right.$ for V $(\operatorname{den} v=n)$ and let $i v_{1}^{*} \varepsilon_{1 \leq i \leq n}$ be its deal basis. Then: $\Omega:=\sum_{i=1}^{n} v_{i}^{*} \otimes v_{i}$ is independent of the choice of basis.
Pood: If $\left\{\tilde{v}_{i}\right\}_{1 \leq i s n}$ is anther basis for V, them

$$
\begin{aligned}
& \alpha=\sum_{i=1}^{n} r_{i}^{*} \otimes v_{i} \\
& B=\sum_{i=1}^{m} \tilde{v}_{i}^{*} \otimes \tilde{v}_{i} \\
& \in V^{*} \otimes V \quad \& \quad \phi(\alpha)=\phi(B)=I d_{V} \\
& \in H_{m}(V, V) \\
& v=\sum_{i=1}^{n} a_{i} v_{i}=\sum_{j=1}^{n} b_{j} \tilde{v}_{j} \\
& \Rightarrow \phi(\alpha)(v)=\sum_{i=1}^{n} \Phi\left(v_{i}^{*} \otimes v_{i}\right)\left(\sum_{j=1}^{n} a_{j} v_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j} \Phi\left(v_{i}^{*} \otimes v_{i}\right)\left(v_{j}\right) \\
& =\sum_{i, j=1}^{n} a_{j} \frac{v_{i}^{*}\left(v_{j}\right)}{\delta_{i j}} \cdot v_{i}=\sum_{i=1}^{n} a_{i} v_{i}=v
\end{aligned}
$$

Same reasoning fires $\phi(\beta)(v)=v$.
Since Φ is an iso, $\alpha=\beta$.
Obs 1: If dim V is infinite, we conn't use this to define a comical tensor. We ned to put a topology in $V \otimes V^{\star}$ \& Take comptitim.
Obs 2: This also shows Φ in Hm -tensor adjrientress cannot be senjectise if V is impinite-dimensional.

Take $W=V$, then id $V \notin I_{m} \Phi$ (it would cousjpnd T_{0} the callurical tenser, but we don't have one... (we can't have (minute sums in $V^{*} \otimes V$.))
ss Thor Algebra
Pick any \mathbb{K}-rector space V. Inductively we define

$$
T^{k}(V)=V^{\otimes k}=\underbrace{V \otimes \cdots \otimes V}_{k \text { terms }} \text { fo all } k \geqslant 2
$$

m Collect all these tensors into 1 rector space via (1).

$$
I^{0}(V)=\bigoplus_{n \geqslant 0} T^{n}(V) \quad\left(T^{0}(V)=\mathbb{K}\right)
$$

Pop: $T^{0}(V)$ is a \mathbb{K}-algebra $=\mathbb{K}$-vector space + ring structure
Proof: Enough To define the multiplication between $T^{n \prime}(V) \& T^{m}(V)$

$$
T^{n}(v) \times T^{m}(v) \longrightarrow T^{n+m}(v) \text { bilinear }
$$

. We define it on indecomprable tensors \& extend \mathbb{K}-bilimarly.

$$
\left(v, \otimes \cdots \otimes v_{n}\right) \cdot\left(w, \otimes \cdots \otimes w_{m}\right)=v_{1} \otimes \cdots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{n}
$$

- Well-defined? (1) We can work with bases \& extend \mathbb{K}-linearly
(2) Unisesal Paofecty: $\left(V^{n} \times \ldots \times V\right) \times\left(V^{n}\right.$ copies $\left.\times V\right)$

Example: $V=\mathbb{K}^{n}$, then $T^{m}(V) \leftrightarrow$ hanogencous degree m polynomials in n non-commuting variables.

- variables $\quad x_{i} \longleftrightarrow e_{i} \quad$ (standard basis for \mathbb{K}^{n})
$E_{g}, \quad\left(\sum_{j} a_{i} e_{i}\right) \otimes\left(\sum_{j} b_{j} e_{j}\right)=\sum_{i, j} a_{i} b_{j}\left(e_{i} \otimes e_{j}\right)$ $x_{i} \cdot x_{j}$ monnuial
$\leadsto T^{2}\left(\mathbb{K}^{n}\right)=$ homos degree 2 plays in n nun-commutiong variables.
\$3 Symmetric a Exterior Algebras
Next, we define two quotients of $T^{k}(V)$ that allow as T_{0} swap entries on tensors, with/ without a sign. We assume chalk $\neq 2$ Definition:

$$
\text { of } v)^{u}
$$

Obs 1: A Typical summand of am element in $S^{k}(V)$ is written as $v_{1} \cdots v_{k}$

- $S^{k}\left(\mathbb{K}^{n}\right)=$ deg homogeneous polynomials in n comustieng rinables!

Eg: $\quad S^{2}\left(\mathbb{K}^{n}\right) \Rightarrow\left(\sum_{i=1}^{n} a_{i} e_{i}\right) \otimes\left(\sum_{j=1}^{n} b_{j} e_{j}\right)=\sum_{i, j=1}^{n} a_{i} b_{j} e_{i} \otimes e_{j}$

$$
\begin{aligned}
& =\sum_{i<j}\left(a_{i} b_{j}+a_{j} b_{i}\right) e_{i} e_{j}+\sum_{i=1}^{n} a_{i} b_{i} e_{i} e_{i} \\
& e_{i} \otimes e_{j}
\end{aligned}=e_{j} \otimes e_{i} \text { in } s^{2}\left(\mathbb{K}^{n}\right) .
$$

Lemma: $v_{1} \otimes \ldots\left(\otimes v_{k}-s g(\sigma) v_{\sigma_{(1)}} \otimes \cdots \otimes v_{\sigma_{(k)}}=0 \operatorname{in} A_{v}^{k}\right.$ frall $\sigma \in S_{k}, v_{1} \ldots, v_{n} \in V$
PF/ By induction in $\operatorname{lin}(\sigma)$ (witi σ as a pwouct of siaple transpositions)
Base care $\ln (\sigma)=1:$ is the definition of $\Lambda^{k}(V)$.
Obs 2: A Typical summand if un lement in $\Lambda^{k}(V)$ is witten as $v, \wedge \ldots \wedge v_{k}$ (ridu matters!)

- $v, \wedge \ldots \wedge v_{k}=0$ if $v_{i}=v_{j}$ fos sime ifj (bylemema) $\operatorname{sign}(i j)=-1$, io flepping sigus inturduces a negatien ripn

$$
\text { - } v_{\sigma_{(1)}} \wedge \ldots v_{\sigma_{(k)}}=\operatorname{siph}(\sigma)\left(v_{1} \wedge \ldots \wedge v_{k}\right) \quad \forall \sigma \in S_{k} \text {. }
$$

Prop: Bases fos $S^{k}(v) \& \Lambda^{k}(v)$:
If $\left\{v_{i}: i \in I\right\}$ is a basis fo V \& I is totally ordened, then (1) $\left\{v_{i_{1}}^{r_{i}} \cdots v_{i_{s}}^{r_{i s}}: r_{i_{1}}+\cdots+r_{i s}=k, r_{1}, r_{i j} \geqslant 1\right\}$ is a basisfor $S^{k}(v)$
(2) $\left\{v_{i} \wedge \ldots \wedge v_{i k} \quad i_{1} i_{2}<\ldots<i_{k} m I\right\}$ is a basis for $\Lambda^{k}(V)$

Obs: Total rder if I is infinite uppuines the axion of choice.

Corollary: Assume $\operatorname{dim} V=n$. Then,
(1)dim $S^{k} V=\binom{n+k-1}{k} \quad$ (\# mammals it deg k in invariables)
(2) $\operatorname{dim}\left(\Lambda^{k} v\right)=\binom{n}{k} \quad(=0$ if $k>n)$

We can define Symmetric and exterior algebras:

$$
\begin{array}{ll}
S_{y m}(V)=S^{0}(V)=\bigoplus_{n \geqslant 0} S^{n}(V) & \left(S^{0}(V)=\mathbb{K}, S^{\prime}(V)=V\right) \\
\Lambda^{\cdot}(V)=\bigoplus_{n \geqslant 0} \Lambda^{n}(V) & \left(\Lambda^{0}(V)=\mathbb{K}, \Lambda^{\prime}(V)=V\right)
\end{array}
$$

Prop: $S^{\circ}(V)$ \& $\Lambda^{\circ}(V)$ are \mathbb{K}-algebras.
SF/ Follow the same idea as in $T^{\circ}(V)$. Define multiplicative I: $\frac{S^{n}(V)}{v_{1} \otimes \cdots \otimes v_{n}} \times \frac{S^{m}(V) \longrightarrow S^{n+m}(V)}{\longrightarrow \frac{v_{1} \otimes \cdots \omega_{m}}{} \longrightarrow v_{n} \otimes w_{1} \otimes \cdots \otimes \omega_{n}}$ $\Psi: \Lambda^{n}(V) \times \Lambda^{m}(V) \longrightarrow \Lambda^{n+b a}(V)$

$$
v, \wedge \ldots \wedge v_{n} \times w, \wedge \ldots \wedge w_{m} \longmapsto v, \wedge \cdots \wedge v_{n} \wedge w, \wedge \ldots \wedge w_{n}
$$

More precisely: $\Phi\left(\bar{u}, \overline{u^{\prime}}\right)=\overline{\varphi\left(u, u^{\prime}\right)}$ in $S^{n+m}(v)$

$$
\psi\left(\bar{u}, \bar{u}^{\prime}\right)=\overline{\varphi\left(u, u^{\prime}\right)} \text { in } n^{n+w}(v)
$$

To show it's well-dipned, need to show the relations depming $S^{k}(V) \& \Lambda^{k}(V)$ are puseesed (Exercise) - multiplication is associative, distributive by construction

