Lecture 40: Bilinear forums III
Recall $f \in B_{i} l(V, V, \mathbb{K})$ symmetric if $f(r, w)=f(w, r) \quad \forall v, w$ skewsyrum $\quad f(v, w)=-f(w, v) \quad \forall v, w$.
GOAL: Classify (nom-dyg) symmectic/ shew-sym forms.
si Build ding rethogrual basis fr $\mathbb{K}^{n}:($ char $\mathbb{K} \neq z)$
1 Last time, we build studied sypmutuc mon-deg bilinear forms $m \mathbb{R}^{n}$ \& build an rtuggmal basis $\left.B=3 \varepsilon_{1} \ldots \varepsilon_{n}\right\}$ ifs \mathbb{R}^{n} nth respect to $\left.f \in B_{i}\right|_{\text {ny mp }} ^{\text {Sym }}\left(\mathbb{R}^{n}, \mathbb{R}^{n}, \mathbb{R}\right)$., ie $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i, j$. This was done using Gram-Schmidt method. At the center of it we had the assumption that $f(v, r) \neq 0$ whenever $r \neq 0$. But this is wen-nec. twee! Whenever this fails, the algorithm cannot proceed.

We need the following key lemma To bypass this issue. We assume \mathbb{K} is any field with char $\mathbb{K} \neq 2$. (this inclucles \mathbb{R}).
Lemma : Assume G is seymuntic, un-dy \mathbb{X}-bilinear from, on \mathbb{K}^{n} and char $k \neq 2$. Then:
(1) $\exists v_{0} \neq 0$ with $f\left(v, v_{0}\right) \neq 0$
(2) $\mathbb{K}^{n}=\operatorname{Sp}\left(v_{0}\right)$
($+\left\langle v_{0}\right\rangle^{\perp}$ where $\langle v\rangle^{\perp}=\left\{w \in \mathbb{K}^{n}: f_{(r, w)}=0\right\}$
(3) $\left.{ }^{f}\right|_{\left\langle v_{0}\right\rangle^{+}}{ }_{\left.\times v_{0}\right\rangle^{1}}$ is a non-depeuerate signanituic biliman free.

Pf/ By a Lenora hum Lecture 39, page 3, we know that A is confetely determined by $\{f(r, r): v \in V\}$. Ire precisely,

$$
f(v, w)=\frac{f(v+w, v+w)-f(v, v)-f(w, w)}{2}
$$

(1) If $f(x, x)=0 \quad \forall x \in \mathbb{K}^{n}$, then $f(v, w)=0 \quad \forall r, w$ \& so $G \equiv 0$ This cannot happen since G is undegenerate. Thees, $\exists r_{0} \in \mathbb{K}$ "
with $f\left(v_{0}, v_{0}\right) \neq 0$
(2) Build $W=\left\langle r_{0}\right\rangle^{1}$. By (1) $r_{0} \& w$.
$\operatorname{Sima} W=\operatorname{kec}\left(\mathbb{K}^{n} \xrightarrow{\varphi_{1}\left(v_{0}\right)} \mathbb{K}\right)$ we know it is a subspace of $1 K^{\prime}$.

- Claim: $\left.W \cap S p\left(r_{0}\right)=30\right\}$

Indeed, $f\left(v_{0}, \lambda v_{0}\right)=\lambda \underbrace{}_{\substack{\left(v_{0}, v_{0}\right) \\ \neq 0}}$ so $\lambda v_{0} \in W \Leftrightarrow \lambda=0$.

- By the Rank-Nullity Thurem, $\operatorname{dim} W+\underbrace{\operatorname{ck}\left(\varphi_{1}\left(r_{0}\right)\right)}=n$

So $\quad \operatorname{dim} W=n-1$.

$$
\begin{array}{r}
=1 \operatorname{since} \varphi_{1}\left(r_{0}\right) \neq 0 \\
\operatorname{in}\left(\mathbb{1}^{4}\right)^{*} .
\end{array}
$$

- $\operatorname{dim}\left(W+S_{p}\left(v_{0}\right)\right)=n$ so \mathbb{K}^{n}
(3) Need to show $W \stackrel{\tilde{\varphi}_{1}}{\longrightarrow} W^{k}$ is injectire.

$$
\omega \longmapsto(v \longmapsto f(w, v))
$$

Pick $\omega \in \operatorname{ker}\left(\varphi_{1}\right)$ so $f(\omega, v)=0 \quad \forall v \in W$
But $w \in\left\langle v_{0}\right\rangle^{1}$ so $f\left(w, \lambda v_{0}\right)=\lambda f\left(w, v_{0}\right)=0$.
So $f(w,-)=0 \in\left(\mathbb{K}^{n}\right)^{*}$ by (2).
This implies $\omega \in$ ker $\left.\left(V \stackrel{\varphi_{1}}{\longrightarrow} V^{*}\right)=30\right\}$.
By sepminitiy $W \stackrel{\widetilde{\varphi}_{2}}{c} W^{*}$ as well, so $\bar{f}=f_{1}$
Propsoitin: Assume $\tilde{F}: V \times V \longrightarrow \mathbb{K}$ is non-deg bilinear form, dem $V=m$. Then, there exists $\left.B=3 \varepsilon_{1}, \ldots, \varepsilon_{m}\right\}$ basis for V with.

$$
f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i \neq j \text { \& } f\left(\varepsilon_{i}, \varepsilon_{i}\right) \neq 0
$$

PF/ By induction on $m=\operatorname{dim} V$. Write $V \simeq \mathbb{K}^{m}$.
$m=1$: nothing to check. Any $v \in \mathbb{K}, 30\}$ satisfies
$f(r, r) \neq 0$ since otherwise $f \equiv 0$.
Inductees step: By Leminar, $\left.\exists r_{0} \in V, 30\right\}$ \& $W=r_{0}>^{\perp}$ with $f\left(v_{0}, r_{0}\right) \neq 0, V=S_{p}\left(v_{0}\right) \oplus W \& f_{w \times w} \min -\operatorname{deg}$ $\operatorname{dim} W=m-1$, so by inductive hypitheies $\left.\exists 3 \varepsilon_{2}, \ldots, \varepsilon_{m-1}\right\}$ basis for W with $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \forall i \neq j \& f_{\left(\varepsilon_{i}, \varepsilon_{i}\right)} \neq$. Take $\varepsilon_{1}=v_{0}$ $f\left(\varepsilon_{1}, \varepsilon_{i}\right)=0 \quad \forall i>1\left(\right.$ since $\left.w \perp v_{0}\right) \& f\left(\varepsilon_{1}, \varepsilon_{1}\right) \neq 0$.
§ 1 Symmetric forms ore \mathbb{R} :
STEP 1: Reduce to the mon-degeeerate case. (last time)
Sylrestu's Theorem: Fix $\quad G: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ non deg symmetric bill from
Thun \exists basis $\left.B=3 \varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ of \mathbb{R}^{n} st $f\left(\varepsilon_{i}, \varepsilon_{j}\right)= \pm \delta_{i j}$
Mreoren, the \# of >0 is independent of the basis. (=signatiene of f)
Proof: By Propsilim: $\exists 3 \omega_{1}, \ldots, w_{n}$ k orthogonal bases for V with $f\left(\omega_{i}, \omega_{i}\right) \neq 0$
STEP2 (lat time) Normalize ria $\varepsilon_{i}=\frac{w_{i}}{\sqrt{\left|f\left(w_{i}, w_{i}\right)\right|}} \forall i$.
STEP 3: Show $=S$ \# $\left.3 i^{\prime} s: f\left(\varepsilon_{i}, \varepsilon_{i}\right)=1\right\}$ is independent of B
Say we have 2 basis as in the Theorem:

$$
\begin{aligned}
& B=\left\{v_{1}, \ldots, v_{p}, v_{p+1}, \ldots v_{n}\right\} \text { with } \quad G\left(v_{i}, v_{i}\right)= \begin{cases}1 & i \leqslant p \\
-1 & i>p\end{cases} \\
& B^{\prime}=\left\{w_{1}, \ldots, w_{q}, w_{q+1}, \ldots, w_{n}\right\} \quad G\left(w_{i}, w_{i}\right)=\left\{\begin{array}{cc}
1 & i \leqslant q \\
-1 & i>q
\end{array}\right. \\
& G\left(v_{i}, v_{j}\right)=f_{\left(w_{i}, w_{j}\right)=0 \quad \forall i \neq j}
\end{aligned}
$$

- Assume $p<q$ \& mach a contradiction. Symmetry yields $p=9$

We define a linear transformation $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p+n-q}$

$$
\xi \longmapsto\left[\begin{array}{c}
f\left(v_{1}, \xi\right) \\
\vdots \\
f(v p, \xi) \\
f\left(\omega_{q+1}, \xi\right) \\
\vdots \\
f\left(\omega_{n}, \xi\right)
\end{array}\right]
$$

Since $p+n-q<n$, the rank-mallity therem gires $\left.\xi_{0} \in \operatorname{ker} L \backslash \backslash 0\right\}$.
Claim: $\xi_{0} \in S_{p}\left(v_{p+i}-v_{n}\right) \cap S_{p}\left(w_{1}, \cdots, w_{g}\right)$

$$
\left.\xi_{0}=\sum_{i=1}^{n} b_{i} w_{i} \Rightarrow 0=f\left(s_{0} \xi_{0} \in \xi_{p}, \xi_{0}\right)=-b_{i} \frac{f\left(w_{1} \neq 0, w_{1}, w_{i}\right)}{\neq 0} \forall_{i}\right)
$$

Now $f\left(\xi_{0}, \xi_{0}\right)=f\left(\sum_{i=p+1}^{n} a_{i} v_{i}, \sum_{i=\rho+1}^{n} a_{i} v_{i}\right)$

$$
=\sum_{i, j=p+1}^{n} a_{i} a_{j} f\left(v_{i}, v_{j}\right)=\sum_{i=p+1}^{n}-a_{i}^{2}<0
$$

$$
f\left(\xi_{0}, \xi_{0}\right)=F\left(\sum_{i=1}^{7} b_{i} w_{i}, \sum_{i=1}^{s} b_{i} w_{i}\right)
$$

This is a contradiction!

$$
=\sum_{i, j=1}^{i} b_{i}^{i} b_{j} h\left(w_{i}, w_{j}\right)=\sum_{i=1}^{q} b_{i}^{2} \sum_{\xi_{0} \neq 0}^{>}>0
$$

Consequence: Classificatim of quodratic formsion \mathbb{R}^{n} (= homogenous elepree 2 pllynamials in $\mathbb{R}_{\left[x_{1}, \ldots x_{n}\right] \text {) }}$
After a limeas change of cordiciatis, they becane $x_{1}^{2}+\cdots+x_{s}^{2}-x_{s+1}^{2}-\cdots-x_{r}^{2}$
Pf/ $f(v, w)=\frac{1}{2}\left(q\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)-q(\underline{v})-q(\underline{w})\right)$ is a bilinian form $c=\operatorname{rank}(f), s=\operatorname{signature}(f)$ Nte: $f(\xi)=f(\xi, \xi)$

- Change of basis 1: $3 e_{1}, \ldots, e_{n} \varepsilon \longrightarrow 3 w_{1} \ldots, w_{1}, \underbrace{\left.\omega_{r+1}, \ldots, w_{n}\right\}}_{\text {in } \operatorname{Rad}(f)}$

Next, we view $w_{2} S_{p}\left(\omega_{1}, \ldots w_{r}\right)=\mathbb{R}^{r}$ \& Cunsider

$$
\hat{f}=f_{W_{\times W}}: \mathbb{R}^{r} \times \mathbb{R}^{r} \longrightarrow \mathbb{R} \text { symm, won-dep bilikear from }
$$

with $S=$ si juature of ($\tilde{F})$
By sylvesturs' Theorem \exists basis $\left\{\varepsilon_{1}, \ldots \varepsilon_{r}\right\}$ of $\mathbb{R}^{R}=W$ with with $f\left(\varepsilon_{i}, \varepsilon_{i}\right)\left\{\begin{array}{ll}1 & i s s \\ -1 & i>s\end{array} \& \quad f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \forall i \neq j\right.$.

- Change of basiszin $\left.\omega: 3 w_{1} \ldots \omega_{r}\right\} \longrightarrow\left\{\varepsilon_{1} \varepsilon_{r}\right\}$ Cnclusion $:\left\{e_{1} . ., e_{n}\right\} \stackrel{\varphi}{\longleftrightarrow}\left\{\varepsilon_{1}, \ldots \varepsilon_{r}, w_{r+1} \ldots \omega_{n}\right\}$ φ lemen changer cordinats $q \longmapsto \tilde{q}(\underline{x})=x_{1}^{2}+\cdots+x_{s}^{2}-x_{s+1}^{2}-\cdots-x_{p}^{2}$.
\$2. Symanitic biliman \mathbb{K}-froms (chan $K \neq 2$)
$V \simeq \mathbb{K}^{n} \quad G \in B_{i} l(V, V, \mathbb{K})$ symuntic we con pich a basis fo $V \quad B=B, \cup B_{2}$ where $S_{p}\left(B_{2}\right)=\operatorname{Rad}(F)$ \& $\tilde{f}=f_{l_{w \times w}}: W \times w \rightarrow \mathbb{K}$ is nm-degenerate $\quad\left(W=S_{p}\left(B_{1}\right)\right)$

$$
[f]_{B Q}=m\left[\begin{array}{c|c}
m & 0 \\
\hline 0 & 0
\end{array}\right]
$$

$$
\left.Q=Q^{\top} \text { in } G L_{m} \| K\right)
$$

$$
\operatorname{Rank}(G)=r k Q
$$

- Q is symuntric \& $Q=[\tilde{f}]_{B, D_{1}}$ $\begin{aligned} \operatorname{rk}(f) & =\operatorname{rk}(\tilde{f}) \\ & =r k(Q)\end{aligned}$
Propsitin: Asseme $\tilde{F}: \mathbb{K}^{m} \times \mathbb{K}^{m} \longrightarrow \mathbb{K}$ is non-deg bilivear formschor $K \neq 2$. Then, there exists $\left.B=3 \varepsilon_{1}, \ldots, \varepsilon_{m}\right\}$ basis for \mathbb{K}^{m} with. $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0 \quad \forall i \neq j \quad \& \quad G\left(\varepsilon_{i}, \varepsilon_{i}\right) \neq 0 \quad \forall i$.
If $\mathbb{K}=\overline{\mathbb{K}}$ we com fuenthen require $f\left(\varepsilon_{i}, \varepsilon_{i}\right)=1 \quad \forall i=1, \ldots, m$.

Proof: The frost part of the statement is the Propsition mage? To finish normalize the basis $\left.3 \varepsilon_{1}, \ldots, \varepsilon_{m}^{\prime}\right\}$ from the Proposition as follows: Lt $a_{i}:=f\left(\varepsilon_{i}^{\prime}, \varepsilon_{i}^{\prime}\right) \neq 0$ in $\mathbb{K}=\overline{\mathbb{K}}$, so $\left.\exists \alpha_{i} \in \mathbb{K}, 30\right\}$ with $\alpha_{i}^{2}=a_{i}$. Then $\varepsilon_{i}=\frac{\varepsilon_{i}^{\prime}}{\alpha_{i}}$ satisfies

$$
\begin{aligned}
& f\left(\varepsilon_{i}, \varepsilon_{i}\right)=\frac{1}{\alpha_{i}^{2}} f\left(\varepsilon_{i}^{\prime}, \varepsilon_{i}^{\prime}\right)=\frac{a_{i}}{a_{i}}=1 \quad \forall i=1, \ldots m \\
& f\left(\varepsilon_{i}, \varepsilon_{j}\right)=\frac{1}{\alpha_{i} \alpha_{i}} f\left(\varepsilon_{i}^{\prime}, \varepsilon_{j}^{\prime}\right)=0 \quad \forall i \neq j
\end{aligned}
$$

§3. Skew-symmitic biliman \mathbb{K}-frons (char $K \neq 2$)
As we mentimed last tine, the calculations for turning a dig bile. symmetric form into a non-deg me works for skew-sym. forms as well. So we foes on un-dey skew-symm fromsorer K with char $\mathbb{K} \neq 2$. Fix

- In what follows we pusent the analog of Sylvester's Thun or skew-segm mon-dy \mathbb{K}-bilinear frons in $V \underline{\mathbb{K}^{n} \text {. This usult is used }}$ to build Darboux coordinates in real symplectic manifolds. - We start discussing the dimension of V.

Lemma : If $\left.\exists f \in B_{i}\right|_{\text {mending }} ^{\text {shensym }}(V, V, \mathbb{K}) \& \operatorname{dem} V<\infty$, then $\operatorname{dim} V$
Proof: Pick $Q=[f]_{B_{B}} \in$ Mat $_{n \times n}(K)$ when B is any basis for V. Then $Q^{\top}=-Q$ since f is shew-symm. \& Q is insectile because A is mendegenerate.
Then $\operatorname{det}(Q)=\operatorname{det}\left(-Q^{\top}\right)=(-1)^{n} \operatorname{det} Q^{\top}=(-1)^{n} \operatorname{det} Q$ $\operatorname{Sin} c e \operatorname{set} Q \neq 0$ \& char $\neq 2$ we have $(-1)^{4}=1$ wo his even. \square

Theorem: Let $f: V \times V \longrightarrow \mathbb{K}$ be a non-deg skew-symuntic

Then \exists basis $\left.B=3 \varepsilon_{i}, \eta_{i}\right\}_{i=1}^{n}$ for V st
(1) $f\left(\varepsilon_{i}, \eta_{j}\right)=\delta_{i j}=-f\left(\eta_{j}, \varepsilon_{i}\right)$
(2) $f\left(\varepsilon_{i}, \varepsilon_{j}\right)=0=f\left(\eta_{i}, \eta_{j}\right)$

$$
\begin{aligned}
& \left.\begin{array}{l}
\forall i, j \\
\forall i, j,
\end{array}\right\}[f]_{B B}=\left[\begin{array}{ccc}
0-1 & 0 \\
\frac{10}{0} & 0 \\
0 & \ddots & 0 \\
0 & 0-1 \\
i-1
\end{array}\right] \\
& \text { (Int: } \delta f]_{\underline{\varepsilon}, \underline{\eta}}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
\end{aligned}
$$

Proof: By Lemma dim V is ese $\left(=2 n\right.$ for some $\left.n \in \mathbb{Z}_{\geq 1}\right)$ Wee proved by induction on n.
Base case: $n=1 \quad$ Pick any $\left.\varepsilon_{1} \in V, 30\right\}$ \& choose $\eta_{i}^{\prime} \in V$ st $f\left(\varepsilon_{1}, \eta_{1}^{\prime}\right) \neq 0 \quad\left(\right.$ such η_{i} exists since $f\left(\varepsilon_{1},-\right) \neq 0 \mathrm{~m} V^{*}$)
Claim: $\left\{\varepsilon_{1}, 3^{\prime}\right\}$ is li.
Otherwix, $\eta_{1}^{\prime}=\alpha \varepsilon_{1}\left(\right.$ since $\left.\varepsilon_{1} \neq 0\right)$, so $f\left(\varepsilon_{1}, \eta_{1}^{\prime}\right)=\underbrace{\alpha f_{\left(\varepsilon_{1}, \varepsilon_{1}\right)}}_{=0}=0$ Cant!
Next, we rescale η_{1}^{\prime} to $\eta_{1}=\frac{\eta_{1}^{\prime}}{f\left(\varepsilon_{1}, \eta_{1}^{\prime}\right)}$ so $f\left(\varepsilon_{1}, \eta_{1}\right)=1$.
$d{ }_{\mathrm{dm}} V=2$ so we are dine.
Inductive step: Pick $\left.3 \varepsilon_{1}, \eta_{1}\right\}$ as in the base case.
Next, consider $W=\left\{v \in V: f\left(\varepsilon_{1}, v\right)=f\left(\eta_{1}, v\right)=0\right\}$
By the Lemma below, we have:
(1) dem $W=2 n-2=2(n-1)$
(2) $W \oplus S p\left(\varepsilon_{1}, \eta_{1}\right)=V$
(3) $f_{w \times w}$ is um-deg \& skuw-sym.

So by the IH, W has a basis $\left.3 \varepsilon_{i}, \eta_{i}\right\}_{i=2}^{n}$ satisfying the conditions in the statement. The conditemes

$$
\begin{array}{ll}
f\left(\varepsilon_{1}, \varepsilon_{j}\right)=f\left(\eta_{1}, \eta_{j}\right)=0 & \forall j \neq 1 \\
f\left(\varepsilon_{1}, \eta_{j}\right)=f\left(\eta_{1}, \varepsilon_{j}\right)=0 & \forall j \neq 1
\end{array}
$$

Lemmar: Let F bee a mon-deg skew-syan from in $V \simeq K^{2 n}$ with chark $\neq 2$. Assume V admits zeectors $l i \varepsilon_{1}, \eta_{1}$, with $f\left(\varepsilon_{1}, \eta_{1}\right)=1$ cunsiden $W=\left\langle\varepsilon_{1}, \eta_{1}\right\rangle^{\perp}=\left\{\omega \in V: f\left(\varepsilon_{1}, w\right)=f\left(\eta_{1}, \omega\right)=0\right\}$.
Then: $V=\operatorname{Sp}_{p}\left(\varepsilon_{1}, n_{1}\right) \oplus W$ \& $f_{W \times W}$ is mon-dy.
Prod: We stact by showing the sem is direct.
Ulaim 1: $w \cap \operatorname{Sp}\left(\varepsilon_{1}, \eta_{1}\right)=30 \varepsilon$.
BF/Pick $\omega=\alpha \varepsilon_{1}+\beta \eta_{1} \in W$. We show $\alpha=\beta=0$ as follows.
(i) $0=f\left(\varepsilon_{11} \alpha \varepsilon_{1}+\beta \eta_{1}\right)=\alpha \underbrace{f\left(\varepsilon_{1}, \varepsilon_{1}\right)}_{=0}+\beta \underbrace{f\left(\varepsilon_{1}, \eta_{1}\right)}_{=1}=\beta \Rightarrow \beta=0$.
(2) $0=f\left(\eta_{1}, \alpha \varepsilon_{1}\right)=\alpha f\left(\eta_{1}, \varepsilon_{1}\right)=-\alpha \quad \Rightarrow \quad \alpha=0$.

Claim 2: $\operatorname{dim} W=\operatorname{din} V-2$

$$
\begin{aligned}
& \text { Jf/ } \varphi: V \longrightarrow \mathbb{K}^{2} \quad \text { is lemar \& } w=\operatorname{Ker} \varphi \\
& v \longmapsto\left[\begin{array}{l}
f\left(\varepsilon_{1}, v\right) \\
f\left(\eta_{1}, v\right)
\end{array}\right] \\
& \varphi\left(-\varepsilon_{1}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad, \varphi\left(\eta_{1}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { कr } \operatorname{Im} \varphi=\mathbb{K}^{2}
\end{aligned}
$$

By Rank- N allity Thurem, dem $W=\operatorname{dan} V-2$.
Claim3: ${ }^{5} 1_{w \times w}$ is num-dy.
3F) $\varphi_{1}: w \longrightarrow w^{*}$

$$
v \longmapsto f(r,-)
$$

$$
\begin{aligned}
\varphi_{2}=-\varphi_{1}: w & \longmapsto w^{*} \\
v & \longmapsto f(-, v)
\end{aligned}
$$

Pick $v \in \operatorname{ker}\left(\varphi_{1}\right)$ so $f\left(v, w_{1}\right)=0 \quad \forall w \in W$.
Now $r \in W$ so $f\left(r, \varepsilon_{1}\right)=f(v, r)=0$.
Cunclude $f(r,-)=0$ in $V^{*} \Rightarrow r=0$ since fismm-dy. \square

