ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 1

Problem 1. Let G and G^{\prime} be two groups and $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove the following statements:
(i) φ is injective if and only if $\operatorname{Ker}(\varphi)=\{e\}$.
(ii) φ is surjective if and only if $\operatorname{Im}(\varphi)=G^{\prime}$.
(iii) φ is an isomorphism if and only if it is a bijection.

Problem 2. Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Let G be a group of order p. Prove that every non-identity element of G is a generator of G. (Hence, G is cyclic, and in particular abelian).

Problem 3. Let G be a group and H_{1}, H_{2} be two subgroups of G. Assume that $G=H_{1} \cup H_{2}$. Prove that either $G=H_{1}$ or $G=H_{2}$.

Problem 4. Let G be a group and H_{1}, H_{2} be two subgroups of G such that both $\left(G: H_{1}\right)$ and $\left(G: H_{2}\right)$ are finite. Prove that $\left(G: H_{1} \cap H_{2}\right)$ is also finite.

Problem 5. Consider the set \mathbb{Q} of rational numbers viewed as an abelian group under usual addition.
(i) Is \mathbb{Q} a finitely-generated group?
(ii) Does there exist a proper subgroup $H<\mathbb{Q}$ of finite index?

Problem 6. Let G be a group and H be a subgroup of G with $(G: H)=2$. Prove that H is a normal subgroup of G.

Problem 7. Let G be a group such that every non-identity element of G has order 2 (so the exponent of G is 2). Prove that G is abelian.

Problem 8. Let G be a group of order ≤ 5. Prove that G is abelian. Give an example of a non-abelian group of order 6.

Problem 9. Let m, n be two positive integers. What is the cardinality of the set of group homomorphisms $\operatorname{Hom}_{\text {Gps }}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$?

Problem 10. Let n be a positive integer. Determine the cardinality of the set of group automorphisms Aut ${ }_{\text {Gps }}(\mathbb{Z} / n \mathbb{Z})$.

Problem 11. Let G be a group. Consider the following subset of G :

$$
X=\left\{[a, b]:=\frac{\left.a b a^{-1} b^{-1} \mid a, b \in G\right\} \subset G .}{1} .\right.
$$

Let $H=\langle X\rangle$ be the subgroup of G generated by X. It is usually denoted by $[G: G]$ and it is known as the commutator subgroup of G. Prove the following assertions about H :
(i) H is a normal subgroup of G.
(ii) G / H is abelian.
(iii) If G^{\prime} is an abelian group and $\psi: G \rightarrow G^{\prime}$ is a group homomorphism, then $H \subset \operatorname{Ker}(\psi)$.

Problem 12. Let G be a group. Given $g \in G$, consider the (conjugation) map $C_{g}: G \rightarrow G$

$$
C_{g}(x)=g x g^{-1} \text { for every } x \in G \text {. }
$$

(1) Prove that C_{g} is an automorphism of G.
(2) Prove that $C: G \rightarrow \operatorname{Aut}_{G \mathrm{Gss}}(G)$ defined by $g \mapsto C_{g}$ is a group homomorphism.
(3) Prove that $\operatorname{Im}(C) \subset \operatorname{Aut}_{G p s}(G)$ is a normal subgroup (called the group of inner automorphisms of G).

Problem 13. Let G be a finite abelian group (written additively), and let $H<G$ be

$$
H=\{g \in G: 2 g=0\} .
$$

Let $x \in G$ be defined as $x=\sum_{g \in G} g$. Prove that
(i) $x=\sum_{h \in H} h$.
(ii) If $|H| \neq 2$, then $x=0$.
(iii) If $|H|=2$, then $H=\{0, x\}$.

Problem 14. Let $p \in \mathbb{Z}_{\geq 2}$ be a prime number. Consider the group $G=(\mathbb{Z} / p \mathbb{Z}) \backslash\{0\}$ under multiplication. Use the previous problem to show that $(p-1)!\equiv-1$ modulo p.

Problem 15. Let G be the group of symmetries of a regular hexagon. What is the order of G ?

Problem 16. Let G be a finite group and N_{1}, N_{2} be two normal subgroups of G. Assume that $\left|N_{1}\right|$ and $\left|N_{2}\right|$ are coprime.
(i) Prove that $x_{1} x_{2}=x_{2} x_{1}$ for every $x_{1} \in N_{1}$ and $x_{2} \in N_{2}$.
(ii) Prove that $N_{1} \cap N_{2}=\{e\}$.

Problem 17. Let G be a group and N_{1}, N_{2} be two normal subgroups of G. Assume that $N_{1} \cap N_{2}=\{e\}$. Prove that $x_{1} x_{2}=x_{2} x_{1}$ for every $x_{1} \in N_{1}$ and $x_{2} \in N_{2}$.

Problem 18. Let G be a group. The center of G, denoted by $\mathrm{Z}(G)$, is defined as:

$$
\mathbf{Z}(G)=\{g \in G: g x=x g \text { for every } x \in G\}
$$

(i) Prove that $\mathrm{Z}(G)$ is a normal subgroup of G.
(ii) Assume that there is a subgroup $H<\mathrm{Z}(G)$ such that G / H is cyclic. Prove that G is abelian.

Problem 19. The group of quaternions Q_{8} is defined as the set $\mathrm{Q}_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ subject to the following relations:
$i^{2}=j^{2}=k^{2}=-1,(-1)^{2}=1, i j=k, j k=i, k i=j,(-1) x=x(-1)=-x$ for $x= \pm i, \pm j, \pm k$
This operation is associative (you do not have to prove this).
(i) Prove that every subgroup of Q_{8} is normal.
(ii) Let D_{4} be the dihedral group of order 8. It is the group of symmetries of a square, or more explicitly:

$$
D_{4}=\left\{e, \rho, \rho^{2}, \rho^{3}, s, s \rho, s \rho^{2}, s \rho^{3}\right\}
$$

with group operation determined by: $s^{2}=\rho^{4}=e$ and $s \rho s=\rho^{3}$. Show that Q_{8} and D_{4} are not isomorphic.

Problem 20. Consider the Heisenberg group over $\mathbb{Z} / 3 \mathbb{Z}$ (viewed as the field with three elements):

$$
\mathrm{H}=\left\{\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{Z} / 3 \mathbb{Z}\right\}
$$

with the group operation being matrix multiplication. Prove that $\exp (\mathrm{H})=3$, and that H is not abelian.

