## ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 4

Problem 1. Fix a prime number $p>2$. Assume $G$ is a group of order $2 p$. Prove that either $G$ is cyclic or $G$ is isomorphic to the Dihedral group $D_{p}$.

Problem 2. Let $C: G \rightarrow \operatorname{Aut}_{g p}(G)$ be given by $g \mapsto C_{g}$, where $C_{g}(x)=g x g^{-1}$ (see Problem 12 of Homework 1). Is $G \rtimes_{C} G$ isomorphic to $G \times G$ ?

Problem 3. Let $A, B$ be two groups and $G=A \times B$. Let $H$ be a subgroup of $G$ such that $A \subseteq H$. Prove that $H=A \times(H \cap B)$.

Problem 4. Assume that there is a short exact sequence of group homomorphisms:

$$
1 \longrightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} \mathbb{Z} \longrightarrow 1 .
$$

Further assume that $\operatorname{Im}(\varphi) \subseteq \mathrm{Z}(B)$ (the center of $B$ ). Prove that this exact sequence is trivial (in particular, $B=A \times \mathbb{Z}$ ).

Problem 5. Let $G_{1}$ and $G_{2}$ be two groups and $G$ be a subgroup of $G_{1} \times G_{2}$. Let $\pi_{1}: G_{1} \times$ $G_{2} \rightarrow G_{1}$ and $\pi_{2}: G_{1} \times G_{2} \rightarrow G_{2}$ be the two natural projections. Define

$$
N_{1}:=G \cap G_{1} ; \quad H_{1}:=\pi_{1}(G) ; \quad N_{2}:=G \cap G_{2} ; \quad H_{2}:=\pi_{2}(G)
$$

Prove that $N_{1}$ is normal in $H_{1}$ and $N_{2}$ is normal in $H_{2}$. Prove that there exists an isomorphism $H_{1} / N_{1} \rightarrow H_{2} / N_{2}$.

Problem 6. Recall that $S_{n}$ is the group of permutations of $\{1, \ldots, n\}$ and the length $\ell(\sigma)$ of a permutation $\sigma$ in $S_{n}$ was defined in Problem 8 of Homework 2. Show that it induces a natural group homomorphism $S_{n} \rightarrow\{ \pm 1\}$ via $\sigma \mapsto(-1)^{\ell(\sigma)}$. We call it the sign homomorphism and define the alternating group $A_{n}$ as the kernel of this homomorphism.

Problem 7. For each of the following short exact sequences, determine whether it is split and/or trivial. In each case, write a section and/or a retraction. Are sections/retractions unique?
(i) Recall that $\mathrm{SL}_{2}(\mathbb{C})$ is the group of $2 \times 2$ matrices of determinant 1 , and $\mathrm{GL}_{2}(\mathbb{C})$ is the group of invertible $2 \times 2$ matrices (with entries from the field of complex numbers). The following is the short exact sequence associated to the determinant map det: $\mathrm{GL}_{2}(\mathbb{C}) \rightarrow$ $\mathbb{C}^{*}$, where $\mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ :

$$
1 \longrightarrow \mathrm{SL}_{2}(\mathbb{C}) \longrightarrow \mathrm{GL}_{2}(\mathbb{C}) \xrightarrow{\text { det }} \mathbb{C}^{*} \longrightarrow \mathbf{1}
$$

(ii) Consider the natural inclusion of $\mathbb{Z} / 2 \mathbb{Z}$ in $\mathbb{Z} / 4 \mathbb{Z}$ and the following short exact sequence arising from it
(iii) Let sign: $S_{3} \rightarrow\{ \pm 1\}$ be the sign homomorphism from Problem 6 and consider the short exact sequence arising from it:

$$
1 \longrightarrow A_{3} \longrightarrow S_{3} \xrightarrow{\text { sign }}\{ \pm 1\} \longrightarrow 1 .
$$

Problem 8. Show that dihedral group $D_{4}$ and the quaternion group $Q_{8}$ are extensions of $(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})$ by $\mathbb{Z} / 2 \mathbb{Z}$, that is, we can fit both groups $D_{4}$ and $Q_{8}$ as $G$ into a short exact sequences of the form:

$$
1 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow G \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 1
$$

In addition, show that these two groups are non-isomorphic.
Problem 9. The following examples highlight the differences between short exact sequences, split s.e.s. and trivial s.e.s.
(i) Show that the short exact sequence for $Q_{8}$ defined in Problem 8 is not split (Hint: Look at the elements of order 2 in $Q_{8}$ ).
(ii) Fix $n \geq 3$. Show that the short exact sequence

$$
1 \longrightarrow A_{n} \longrightarrow S_{n} \xrightarrow{\text { sign }}\{ \pm 1\} \longrightarrow 1
$$

induced by the sign homomorphism from Problem 6 is split but not trivial. Conclude that $S_{n} \simeq A_{n} \rtimes \mathbb{Z}_{2}$ but $S_{n} \nsim A_{n} \times \mathbb{Z}_{2}$ (i.e., the direct product of $A_{n}$ and $\mathbb{Z}_{2}$ ).
Problem 10. Find all groups (up to isomorphism) which will fit in the following short exact sequence:

$$
\mathbf{0} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow G \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \mathbf{0}
$$

Problem 11. Consider the following set of elements in $A_{4} \subset S_{4}$ :

$$
\{i d,(12)(34),(13)(24),(14)(23)\} .
$$

(i) Prove that they form a normal subgroup in $S_{4}$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(ii) Prove that the following short exact sequence splits:

$$
1 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \longrightarrow A_{4} \longrightarrow A_{3} \longrightarrow 1
$$

(iii) Decide if the following short exact sequence splits:

$$
1 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) \longrightarrow S_{4} \longrightarrow S_{3} \longrightarrow 1
$$

Problem 12. Let $A, B, C$ be three abelian groups and let there be a short exact sequence

$$
\mathbf{0} \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow \mathbf{0} .
$$

Prove that if this sequence splits, then it is trivial.
Problem 13. How many (up to isomorphism) groups of order 18 are there?
Problem 14. Compute the following automorphism groups: (a) $\operatorname{Aut}_{g p}(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z})$, (b) Aut $_{g p}(\mathbb{Z} / 48 \mathbb{Z})$.

Problem 15. Decide if $\operatorname{Aut}_{g p}\left(S_{5}\right) \simeq S_{5}$ or not.
Problem 16. Let $B$ and $N \leq B$ be the following groups of matrix in $\mathrm{GL}_{2}(\mathbb{C})$.

$$
\begin{gathered}
B=\left\{\left(\begin{array}{cc}
d_{1} & x \\
0 & d_{2}
\end{array}\right) \text { where } d_{1}, d_{2} \neq 0 \text { and } x \text { is arbitrary }\right\} \\
N=\left\{\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \text { where } x \text { is arbitrary }\right\}
\end{gathered}
$$

Prove that $N$ is normal in $B$ (we know this to be true for matrices over $\mathbb{Z} / p \mathbb{Z}$ by Problem 8 (iii) of Homework 3). Prove that $B$ is a semidirect product of $N$ and $H$, where $H$ is the subgroup of $B$ consisting of diagonal matrices.

Problem 17. Let $H$ and $N$ be two groups and $\alpha, \beta: H \rightarrow \operatorname{Aut}_{g p}(N)$ two group homomorphisms. Consider the semidirect products $A=N \rtimes_{\alpha} H$, and $B=N \rtimes_{\beta} H$.
(1) Assume that there exists $T \in \operatorname{Aut}_{g p}(N)$ such that $\beta(h)(n)=T\left(\alpha(h)\left(T^{-1}(n)\right)\right)$ for every $h \in H$ and $n \in N$. Write an isomorphism $F_{T}: A \rightarrow B$.
(2) Assume that there exists $\psi \in \operatorname{Aut}_{g p}(H)$ such that $\alpha(h)=\beta(\psi(h))$, for every $h \in H$. Write an isomorphism $F_{\psi}: A \rightarrow B$.
(3) Assume that there exists a group homomorphism $j: H \rightarrow N$ such that

$$
\alpha(h)(n)=j(h) \cdot(\beta(h)(n)) \cdot j(h)^{-1},
$$

for every $h \in H$ and $n \in N$, where $\beta(h)\left(j\left(h^{\prime}\right)\right)=j\left(h^{\prime}\right)$ for all $h, h^{\prime} \in H$. Write an isomorphism $F_{j}: A \rightarrow B$.

