ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 6

Problem 1. Prove or disprove: the ring $R := \mathbb{Z}[x]/(x^2+1)$ is a principal ideal domain, that is, R is a domain, and every ideal of R is generated by a single element.

Problem 2. Show that the ideal of $\mathbb{Z}[x]$ generated by 2 and x is not principal.

Problem 3. (Radical of an ideal)

Fix a commutative ring A, and let $\mathfrak{a} \subset A$ be an ideal. Define

$$r(\mathfrak{a}) := \{a \in A : a^n \in \mathfrak{a} \text{ for some } n \in \mathbb{Z}_{\geq 1}\}.$$

Prove the following statements for two ideals $\mathfrak{a}, \mathfrak{b}$ of A:

- (i) $r(\mathfrak{a})$ is an ideal of A.
- (ii) $r(r(\mathfrak{a})) = r(\mathfrak{a})$.
- (iii) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$
- (iv) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$

Problem 4. (Ideal quotients) Let \mathfrak{a} and \mathfrak{b} be two ideals of a commutative ring A. Set:

$$(\mathfrak{a}:\mathfrak{b}):=\{a\in A:a\mathfrak{b}\subseteq\mathfrak{a}\}.$$

- (i) Prove that $(\mathfrak{a} : \mathfrak{b})$ is an ideal of A.
- (ii) Compute the ideal quotient ((n) : (m)) in \mathbb{Z} .

Problem 5. Recall that the set of group endomorphisms of a group is a monoid under composition, with its unit the identity map.

(i) If M is a left R-module, show that $\operatorname{End}_{\operatorname{Gps}}(M)$ is a ring, where addition and multiplication of maps $f, g \in \operatorname{End}_{\operatorname{Gps}}(M)$ is defined as follows:

$$(f+g)(m) = f(m) + g(m)$$
 for all $m \in M$ and $f \cdot g := f \circ g$.

- (ii) Show that this gives a shorter way to define left *R*-modules: A left *R*-module is an abelian group *M* together with ring homomorphism $\lambda \colon R \to \operatorname{End}_{\operatorname{Gps}}(M)$. (*Hint*: $\lambda(r)(m) = r \cdot m$ for each $m \in M$ and each r in R.)
- (iii) Given a ring R, we define its opposite ring R^{op} with multiplication $a \cdot b$ in R^{op} equal to $b \cdot a$ in R. Show that a right R-module consists of an abelian group N together with a ring homomorphism $\rho: R^{\text{op}} \to \text{End}_{\text{Gps}}(N)$ (*Hint:* $\rho(r)(n) = n \cdot r$ for each $m \in N$ and each r in R.)

Problem 6. State and prove the three Isomorphism Theorems for modules over rings.

Problem 7. Let R be a ring, and M be a left R-module. Assume that we have $p \in \operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ such that $p^2 := p \circ p = p$ (i.e., an *idempotent* map). Prove that $M \simeq M_1 \oplus M_2$, where M_1 is the kernel of p and M_2 is the image of p.

Problem 8. Give a counterexample to the assertion of Problem 7, if we do not impose the condition $p^2 = p$.

Problem 9. Consider a collection $\{M_i\}_{i \in I}$ of submodules of a left *R*-module *M*, with the inclusion maps $f_i \colon M_i \hookrightarrow M$.

- (i) Using the universal property for direct sums, show that we can build a natural map $f: \bigoplus_{i \in I} M_i \to M$ compatible with the inclusions f_i .
- (ii) Show that f is an isomorphism if and only if the following two conditions hold:
 - (a) $\sum_{i \in I} M_i$ (the submodule of M generated by the set $\{M_i\}_{i \in I}$) equals M, and

(b)
$$M_i \cap \sum_{\substack{j \in I \\ j \neq i}} M_j = \{0\}$$
 for all $i \in I$.

Problem 10. Given three left *R*-modules M_1 , M_2 and M_3 , we say that the short sequence

(1)
$$\mathbf{0} \longrightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow \mathbf{0}$$

where f and g are R-linear maps is exact if f is injective, g is surjective and Im(f) = ker(g). This sequence is trivial if we have an R-linear isomorphism $\eta: M_1 \oplus M_3 \to M_2$ satisfying $f = \eta \circ i: M_1 \to M_2$ and $\pi_2 = g \circ \eta: M_1 \oplus M_3 \to M_3$, where $i: M_1 \to M_1 \oplus M_3$ and $\pi_2: M_1 \oplus M_3 \to M_3$ are the natural inclusion and projection maps. If these conditions holds, we say that both squares in the following diagram

$$\mathbf{0} \longrightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow \mathbf{0}$$
$$\stackrel{id}{\longrightarrow} \eta \uparrow \qquad \stackrel{id}{\longrightarrow} M_1 \xrightarrow{\eta} M_3 \longrightarrow \mathbf{0}$$
$$\mathbf{0} \longrightarrow M_1 \xrightarrow{i} M_1 \oplus M_3 \xrightarrow{\pi_2} M_3 \longrightarrow \mathbf{0}$$

commute.

- (i) Show that the s.e.s. (1) is trivial if it admits a retraction $r: M_2 \to M_1$ (i.e. a group homomorphism with $r \circ f = id_{M_1}$) that is *R*-linear.
- (ii) Show that the s.e.s. (1) is trivial if and only it splits, that is if there exists a section $s: M_3 \to M_2$ (i.e. a group homomorphism with $g \circ s = id_{M_3}$) that is *R*-linear. (*Hint:* Recall that for abelian groups, a s.e.s. splits if an only if it is trivial.)

In the next two problems, we take $A = \mathbb{Z}$, $M = \mathbb{Z}/m\mathbb{Z}$ and $N = \mathbb{Z}/n\mathbb{Z}$.

Problem 11. Given $\alpha \in M$, define P_{α} to be the abelian group generated by two elements $\{e_1, e_2\}$, subject to the following relations:

$$m e_1 = 0$$
 and $n e_2 = \alpha e_1$.

Verify that we have a natural short exact sequence:

 $\varepsilon_{\alpha}: \quad 0 \longrightarrow M \longrightarrow P_{\alpha} \longrightarrow N \longrightarrow 0$.

Problem 12. Determine the necessary and sufficient conditions for two short exact sequences ε_{α} and ε_{β} from Problem 11 to be isomorphic (i.e. where we can build three vertical isomorphisms between the two sequences making the two squares commute, as seen in Problem 10).