ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 6

Problem 1. Prove or disprove: the ring $R:=\mathbb{Z}[x] /\left(x^{2}+1\right)$ is a principal ideal domain, that is, R is a domain, and every ideal of R is generated by a single element.

Problem 2. Show that the ideal of $\mathbb{Z}[x]$ generated by 2 and x is not principal.

Problem 3. (Radical of an ideal)

Fix a commutative ring A, and let $\mathfrak{a} \subset A$ be an ideal. Define

$$
r(\mathfrak{a}):=\left\{a \in A: a^{n} \in \mathfrak{a} \text { for some } n \in \mathbb{Z}_{\geq 1}\right\} .
$$

Prove the following statements for two ideals $\mathfrak{a}, \mathfrak{b}$ of A :
(i) $r(\mathfrak{a})$ is an ideal of A.
(ii) $r(r(\mathfrak{a}))=r(\mathfrak{a})$.
(iii) $r(\mathfrak{a b})=r(\mathfrak{a} \cap \mathfrak{b})=r(\mathfrak{a}) \cap r(\mathfrak{b})$.
(iv) $r(\mathfrak{a}+\mathfrak{b})=r(r(\mathfrak{a})+r(\mathfrak{b}))$.

Problem 4. (Ideal quotients) Let \mathfrak{a} and \mathfrak{b} be two ideals of a commutative ring A. Set:

$$
(\mathfrak{a}: \mathfrak{b}):=\{a \in A: a \mathfrak{b} \subseteq \mathfrak{a}\} .
$$

(i) Prove that $(\mathfrak{a}: \mathfrak{b})$ is an ideal of A.
(ii) Compute the ideal quotient $((n):(m))$ in \mathbb{Z}.

Problem 5. Recall that the set of group endomorphisms of a group is a monoid under composition, with its unit the identity map.
(i) If M is a left R-module, show that $\operatorname{End}_{\text {Gps }}(M)$ is a ring, where addition and multiplicaion of maps $f, g \in \operatorname{End}_{\mathrm{Gps}}(M)$ is defined as follows:

$$
(f+g)(m)=f(m)+g(m) \text { for all } m \in M \quad \text { and } \quad f \cdot g:=f \circ g .
$$

(ii) Show that this gives a shorter way to define left R-modules: A left R-module is an abelian group M together with ring homomorphism $\lambda: R \rightarrow \operatorname{End}_{\text {Gps }}(M)$. (Hint: $\lambda(r)(m)=r \cdot m$ for each $m \in M$ and each r in R.)
(iii) Given a ring R, we define its opposite ring R^{op} with multiplication $a \cdot b$ in R^{op} equal to $b \cdot a$ in R. Show that a right R-module consists of an abelian group N together with a ring homomorphism $\rho: R^{\mathrm{op}} \rightarrow \operatorname{End}_{\text {Gps }}(N)$ (Hint: $\rho(r)(n)=n \cdot r$ for each $m \in N$ and each r in R.)

Problem 6. State and prove the three Isomorphism Theorems for modules over rings.
Problem 7. Let R be a ring, and M be a left R-module. Assume that we have $p \in$ $\operatorname{End}_{R}(M):=\operatorname{Hom}_{R}(M, M)$ such that $p^{2}:=p \circ p=p$ (i.e., an idempotent map). Prove that $M \simeq M_{1} \oplus M_{2}$, where M_{1} is the kernel of p and M_{2} is the image of p.

Problem 8. Give a counterexample to the assertion of Problem 7, if we do not impose the condition $p^{2}=p$.

Problem 9. Consider a collection $\left\{M_{i}\right\}_{i \in I}$ of submodules of a left R-module M, with the inclusion maps $f_{i}: M_{i} \hookrightarrow M$.
(i) Using the universal property for direct sums, show that we can build a natural map $f: \bigoplus_{i \in I} M_{i} \rightarrow M$ compatible with the inclusions f_{i}.
(ii) Show that f is an isomorphism if and only if the following two conditions hold:
(a) $\sum_{i \in I} M_{i}$ (the submodule of M generated by the set $\left\{M_{i}\right\}_{i \in I}$) equals M, and
(b) $M_{i} \cap \sum_{\substack{j \in I \\ j \neq i}} M_{j}=\{0\}$ for all $i \in I$.

Problem 10. Given three left R-modules M_{1}, M_{2} and M_{3}, we say that the short sequence

$$
\begin{equation*}
\mathbf{0} \longrightarrow M_{1} \xrightarrow{f} M_{2} \xrightarrow{g} M_{3} \longrightarrow \mathbf{0} \tag{1}
\end{equation*}
$$

where f and g are R-linear maps is exact if f is injective, g is surjective and $\operatorname{Im}(f)=\operatorname{ker}(g)$. This sequence is trivial if we have an R-linear isomorphism $\eta: M_{1} \oplus M_{3} \rightarrow M_{2}$ satisfying $f=\eta \circ i: M_{1} \rightarrow M_{2}$ and $\pi_{2}=g \circ \eta: M_{1} \oplus M_{3} \rightarrow M_{3}$, where $i: M_{1} \rightarrow M_{1} \oplus M_{3}$ and $\pi_{2}: M_{1} \oplus M_{3} \rightarrow M_{3}$ are the natural inclusion and projection maps. If these conditions holds, we say that both squares in the following diagram

commute.
(i) Show that the s.e.s. (1) is trivial if it admits a retraction $r: M_{2} \rightarrow M_{1}$ (i.e. a group homomorphism with $r \circ f=i d_{M_{1}}$) that is R-linear.
(ii) Show that the s.e.s. (1) is trivial if and only it splits, that is if there exists a section $s: M_{3} \rightarrow M_{2}$ (i.e. a group homomorphism with $g \circ s=i d_{M_{3}}$) that is R-linear. (Hint: Recall that for abelian groups, a s.e.s. splits if an only if it is trivial.)

In the next two problems, we take $A=\mathbb{Z}, M=\mathbb{Z} / m \mathbb{Z}$ and $N=\mathbb{Z} / n \mathbb{Z}$.
Problem 11. Given $\alpha \in M$, define P_{α} to be the abelian group generated by two elements $\left\{e_{1}, e_{2}\right\}$, subject to the following relations:

$$
m e_{1}=0 \quad \text { and } \quad n e_{2}=\alpha e_{1} .
$$

Verify that we have a natural short exact sequence:

$$
\varepsilon_{\alpha}: \quad 0 \longrightarrow M \longrightarrow P_{\alpha} \longrightarrow N \longrightarrow 0 .
$$

Problem 12. Determine the necessary and sufficient conditions for two short exact sequences ε_{α} and ε_{β} from Problem 11 to be isomorphic (i.e. where we can build three vertical isomorphisms between the two sequences making the two squares commute, as seen in Problem 10).

