ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 7

Problem 1. (Euclidean domains and Principal Ideal Domains)

Given an integral domain R, a Euclidean function on R is a map $f: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ satisfying the following property: "If $a, b \in R$ with $b \neq 0$, then there exist $q, r \in R$ such that $a=q b+r$ and either $r=0$ or $f(r)<f(b) . "$

A Euclidean domain is an integral domain that has at least one Euclidean function.
(i) Show that \mathbb{Z} has Euclidean function $f(x)=|x|$.
(ii) Show that $R=\mathbb{K}[x]$ where \mathbb{K} is a field with Euclidean function the degree of a polynomial.
(iii) Show that a Euclidean domain R is a principal ideal domain (that is, any ideal I of R is of the form $I=(x)$ for some $x \in R)$.

Problem 2. Let R be a commutative ring, $x \in R$ be a nilpotent element (i.e. there exists $n \geq 1$ with $x^{n}=0$), and $u \in R$ a unit (that is, u has a multiplicative inverse). Prove that $x+u$ is again a unit.

Problem 3. (Nilradical of a commutative ring) Consider a commutative ring R and let $\mathcal{N} \subset R$ be the set of all nilpotent elements. Show that \mathcal{N} is an ideal of R.

Problem 4. Fix a commutative ring R and let $\mathfrak{a} \subset R$ be the set of all zero-divisors of R. Is \mathfrak{a} an ideal of R ?

Problem 5. Let A, B be commutative rings and let $f: A \rightarrow B$ be a ring homomorphism. Let $\mathfrak{p} \subset A$ be a prime ideal and define $\mathfrak{q} \subset B$ to be the ideal generated by $f(\mathfrak{p})$ in B. Prove or disprove: \mathfrak{q} is a prime ideal.

Problem 6. Let R be a commutative ring and fix a prime ideal \mathfrak{p} of R. Prove that $r\left(\mathfrak{p}^{n}\right)=\mathfrak{p}$ for every $n \geq 1$. (Here, $r(\cdot)$ denotes the radical ideal, as defined in Problem 3 of Homework 6.)

Problem 7. Let R be a commutative ring. Fix $\mathfrak{m} \subset R$ a maximal ideal, and let \mathfrak{p} be a prime ideal. Assume that there exists $n \geq 1$ such that $\mathfrak{m}^{n} \subseteq \mathfrak{p}$. Prove that $\mathfrak{m}=\mathfrak{p}$.

Problem 8. (Jacobson radical)

Fix a commutative ring R and consider the following subset of R :

$$
\mathfrak{J}:=\{x \in R: 1-x y \text { is a unit for every } y \in R\} .
$$

(i) Prove that \mathfrak{J} is an ideal of R.
(ii) Prove that $\mathfrak{J}=\bigcap_{\substack{\mathfrak{m} \subset \subset R \\ \mathfrak{m} \text { maximal ideal }}} \mathfrak{m}$.

Problem 9. Consider the ring $R=\mathbb{C}[x] /(f)$, where $f \in \mathbb{C}[x]$ is a nonzero polynomial. Let us write $f(x)=\prod_{i=1}^{\ell}\left(x-a_{i}\right)^{n_{i}}$, where $a_{1}, \ldots, a_{\ell} \in \mathbb{C}$ and $n_{1}, \ldots, n_{\ell} \in \mathbb{Z}_{\geq 1}$. Prove that

$$
R \xrightarrow{\sim} \prod_{i=1}^{\ell}\left(\mathbb{C}[x] /\left(\left(x-a_{i}\right)^{n_{i}}\right)\right)
$$

Problem 10. (Generalized prime avoidance)

Let R be a commutative ring and let $S \subset R$ be a set that is closed under multiplication and addition. Let $\mathfrak{p}_{i} \subset R$ for $i=1, \ldots, n$, be a a finite list of ideals of R where at most two of them are not prime. Prove that if $S \subset \bigcup_{i=1}^{n} \mathfrak{p}_{i}$, then there exists $j=1, \ldots, n$ with $S \subset \mathfrak{p}_{j}$. (Hint: Review the proof of the prime avoidance theorem.)

Problem 11. Fix a prime $p \geq 2$ and consider the set

$$
R=\left\{\frac{a}{b} \in \mathbb{Q}: p \nmid b \text { with } \operatorname{gcd}(a, b)=1\right\}
$$

(i) Show that R is a subring of \mathbb{Q}.
(ii) Show that R has a unique maximal ideal, so it is a local ring.

Problem 12. (Ring of fractions relative to S)

Let R be a commutative ring, $S \subseteq R$ a multiplicatively closed set. We write a representative for the equivalence class (r, s) in $S^{-1} R:=R \times S / \sim$ by $\frac{r}{s}$.
(i) Show that the addition and multiplication operations on $S^{-1} R$ are well-defined and give $S^{-1} R$ a ring struture.
(ii) Show that the map $j_{S}: R \rightarrow S^{-1} R$ with $j_{S}(r)=\frac{r}{1}$ is a ring homomorphism, and $j_{S}(t)$ is invertible in $S^{-1} R$ for each $t \in S$.
(iii) Show that $S^{-1} R$ satisfies the following universal property. Given a commutative ring B and a ring homomorphism $f: R \rightarrow B$ where $f(s)$ is invertible in B for each $s \in S$, then there exists a unique ring homomorphism $\tilde{f}: S^{-1} R \rightarrow B$ with $f=\tilde{f} \circ j_{S}$. Moreover, $\tilde{f}\left(\frac{r}{s}\right)=f(r) f(s)^{-1}$. (Hint: You must show that this map is well-defined, i.e. it is independent of the choice of representative for $\frac{r}{s}$)

Problem 13. If $R=\mathbb{Z}$ and $S=R \backslash\{0\}$ show that $S^{-1} R \simeq \mathbb{Q}$.
Problem 14. Consider $R=\mathbb{Z} / 6 \mathbb{Z}$, and let $S=\{1,2,4\}$. Show that S is multiplicatively closed and compute $S^{-1} R$. How many elements does $S^{-1} R$ have?

Problem 15. Let \mathbb{K} be a filed and let $R=\mathbb{K}[x]$. Show that the set $S=\left\{1, x^{n}: n \geq 1\right\}$ is multiplicatively closed, and $S^{-1} R \simeq \mathbb{K}\left[x, x^{-1}\right]$ (the Laurent polynomial ring over \mathbb{K}).

Problem 16. (Modules of fractions)

Let R be a commutative ring, $S \subseteq R$ a multiplicatively closed set and M an R-module. Consider the relation \sim defined on $M \times S$:

$$
(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \quad \text { if, and only if, } \quad \exists t \in S \text { with } t\left(s^{\prime} m-s m^{\prime}\right)=0 \in M
$$

(i) Show that \sim defines an equivalence relation on $M \times S$. We write the equivalence class of (m, s) as $\frac{m}{s}$.
(ii) Show that $S^{-1} M:=(M \times S) / \sim$ is an $S^{-1} R$-module with operations:

$$
\frac{m}{s}+\frac{m^{\prime}}{s^{\prime}}=\frac{s^{\prime} m+s m^{\prime}}{s s^{\prime}} \quad \text { and } \quad \frac{a}{t} \frac{m}{s}=\frac{a m}{t s}
$$

(iii) Show that the map $i_{S}: M \rightarrow S^{-1} M$ with $i_{S}(m)=\frac{m}{1}$ is R-linear.
(iv) For each $s \in S$, consider the map $\rho(s): S^{-1} M \rightarrow S^{-1} M$ sending $\frac{m}{t} \mapsto s \frac{m}{t}$ for each m in $S^{-1} M$. Show that $\rho(s)$ is R-linear and $\rho(s)$ is an isomorphism of R-modules, with $\rho(s)^{-1}\left(\frac{m}{t}\right)=\frac{m}{s t}$ for all $m \in S^{-1} M$.
(v) Prove that $S^{-1} M$ satisfies the following universal property. Given an R-module N where the multiplication maps $\rho(s): N \rightarrow N$ are invertible (as an R-linear map) for each $s \in S$, and an R-linear map $f: M \rightarrow N$, then, there exists a unique R-linear map $\tilde{f}: S^{-1} M \rightarrow N$ satisfying $\tilde{f} \circ i_{S}=f$. Moreover, $\tilde{f}\left(\frac{m}{s}\right)=\rho(s)^{-1}(f(m))$.

Problem 17. Let R be a commutative ring, $S \subset R$ a multiplicatively closed set and $\mathfrak{a} \subseteq R$ be an ideal. Prove that $S^{-1} \mathfrak{a}$ (the module of fractions of \mathfrak{a} relative to S defined in Problem 16) is the ideal in $S^{-1} R$ generated by $j_{S}(\mathfrak{a})$, where $j_{S}: R \rightarrow S^{-1} R$ is the natural ring homomorphism.

