ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 8

In all problems below, we assume R is a commutative ring.
Problem 1. Let R be a commutative ring, and let $S \subseteq R$ be a multiplicatively closed set. Let \mathfrak{p} be an ideal which is maximal among the ideals in R not intersecting S. That is, maximal with respect to inclusion, from the following set:

$$
I_{S}=\{\mathfrak{a} \subseteq R: \mathfrak{a} \text { is an ideal of } R, \mathfrak{a} \cap S=\emptyset\}
$$

Prove that \mathfrak{p} is prime.
Problem 2. (Nilradical of a commutative ring) Consider a commutative ring R and let $\mathcal{N} \subset R$ be the set of all nilpotent elements (see Problem 3 of Homework 7). Prove that

$$
\mathcal{N}=\bigcap_{\substack{\mathfrak{p} \subset R \\ \mathfrak{p} \text { prime ideal }}} \mathfrak{p} .
$$

(Hint: Use Problem 1 for the inclusion (〇).)
Problem 3. Consider the ring $R[x, y]$ and the multiplicatively closed set S generated by x, that is $S=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$. Prove the following isomorphisms of rings

$$
\left(S^{-1}\right)(R[x, y] /(x y)) \simeq R\left[x, x^{-1}\right] .
$$

Problem 4. Consider the following sequence of R-linear maps between R-modules:

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0 .
$$

(i) Prove that this sequence is exact if, and only if, for every maximal ideal $\mathfrak{m} \subset R$, the following sequence of $A_{\mathfrak{m}}$-modules is exact:

$$
0 \longrightarrow M_{\mathfrak{m}}^{\prime} \longrightarrow M_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}}^{\prime \prime} \longrightarrow 0 .
$$

(ii) Show that the same is true if we consider localizations at all prime ideals \mathfrak{p} of R.

Problem 5. Given an R-module M, we define the support of M as:

$$
\operatorname{Supp}(M)=\left\{\mathfrak{p}: \mathfrak{p} \text { is a prime ideal of } R, M_{\mathfrak{p}} \neq(0)\right\}
$$

(i) If N is a submodule of M, show that $\operatorname{Supp}(M)=\operatorname{Supp}(N) \cup \operatorname{Supp}(M / N)$.
(ii) Given an ideal \mathfrak{a} of R, show that

$$
\operatorname{Supp}(R / \mathfrak{a})=\{\mathfrak{p}: \mathfrak{p} \text { is a prime ideal of } R \text { with } \mathfrak{p} \supseteq \mathfrak{a}\}
$$

Problem 6. Assume R is a domain and let \mathfrak{m} and \mathfrak{n} be maximal ideals of R. Consider the prime ideals $R_{\mathfrak{n}} \mathfrak{m} \subset R_{\mathfrak{n}}$ and $R_{\mathfrak{m}} \mathfrak{n} \subset R_{\mathfrak{m}}$ in the corresponding localizations. Prove or disprove: $\left(R_{\mathfrak{m}}\right)_{R_{\mathfrak{m}} \mathfrak{n}}$ and $\left(R_{\mathfrak{n}}\right)_{R_{\mathfrak{n}} \mathfrak{m}}$ are isomorphic (local) rings. What happens if R is not a domain?

Problem 7. Let $\mathfrak{p} \subsetneq R$ be a prime ideal of R. Show that the quotient $R_{\mathfrak{p}} /\left(\mathfrak{p} R_{\mathfrak{p}}\right)$ is isomorphic to the quotient field $\operatorname{Quot}(R / \mathfrak{p})$.

Problem 8. The goal of this exercise is to use exactness of localization to reprove that

$$
R=\bigcap_{\substack{\mathfrak{p} \subseteq R \\ \mathfrak{p} \text { prime }}} R_{\mathfrak{p}}=\bigcap_{\substack{\mathfrak{m} \subseteq R \\ \mathfrak{m} \text { maximal }}} R_{\mathfrak{m}}
$$

if R is a domain. We can show that $R=\bigcap_{\substack{\mathfrak{m} \subseteq R \\ \mathfrak{m} \text { maximal }}} R_{\mathfrak{m}}$ by working with localizations of modules.
(i) View $M:=\bigcap_{\substack{\mathfrak{m} \subseteq R \\ \mathfrak{m} \text { maximal }}} R_{\mathfrak{m}}$ as an R-module and show that R is a submodule of M. In particular, we can consider the quotient module $M^{\prime}:=M / R$.
(ii) Given any maximal ideal \mathfrak{n} of R, use the exactness of localization to certify that $\left(M^{\prime}\right)_{\mathfrak{n}} \simeq M_{\mathfrak{n}} / R_{\mathfrak{n}}$ as $R_{\mathfrak{n}}$-modules.
(iii) Next, show that $M_{\mathfrak{n}}=\bigcap_{\substack{\mathfrak{m} \subseteq R \\ \mathfrak{m} \text { maximal }}}\left(R_{\mathfrak{m}}\right)_{R_{\mathfrak{m}} \mathfrak{n}}$.
(iv) Use that $R_{\mathfrak{n}}$ is a local ring with maximal ideal $R_{\mathfrak{n}} \mathfrak{n}$ to show that
(v) The previous three items ensure that all localizations $\left(M^{\prime}\right)_{\mathfrak{n}}$ are trivial. Conclude from here that $M^{\prime}=0$.

Problem 9. Let B be a commutative ring which contains R as a subring. Assume that B is finitely generated as a ring over R, that is, there exists finitely many elements b_{1}, \ldots, b_{ℓ} in B such that every $b \in B$ can be written as a polynomial expression $\left\{b_{1}, \ldots, b_{\ell}\right\}$ with R coefficients. Prove that if R is Noetherian, then so is B.

Problem 10. Assume $R[x]$ is Noetherian. Does it imply that R is Noetherian?
Problem 11. Let M be a Noetherian module over R. Consider the set $M[x]$, defined as:

$$
M[x]=\left\{\sum_{i=0}^{N} m_{i} x^{i}: m_{i} \in M \text { for all } i, N \geq 0\right\}
$$

(i) Show that $M[x]$ is an $R[x]$-module.
(ii) Show that $M[x]$ is a Noetherian module over $R[x]$.
(iii) What happens when we view $M[x]$ as an R-module?

Problem 12. Assume that R is not Noetherian. Let \mathcal{S} be the set of all ideals of R which are not finitely generated. Prove that this set has a maximal element and that any such maximal element is necessarily a prime ideal of R.

Problem 13. Assume that R is Noetherian. Show that the nilradical \mathcal{N} is a nilpotent ideal (i.e., there exists $k \in \mathbb{Z}_{\geq 1}$ with $\mathcal{N}^{k}=(0)$.)

Problem 14. Assume that $R_{\mathfrak{p}}$ is a Noetherian ring, for every prime ideal \mathfrak{p} of R. Prove or disprove: R is Noetherian.

Problem 15. Let M be a Noetherian module over R. Let $f: M \rightarrow M$ be a surjective R-linear map. Prove that f is an isomorphism. (Hint: consider the chain of submodules $\left\{\operatorname{Ker}\left(f^{n}\right)\right\}_{n \geq 0}$, where $f^{0}=\operatorname{id}_{M}$.)

