ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 9

In all problems below, we assume R is a commutative ring.
Problem 1. Let $I \subsetneq R$ a proper ideal, and $\mathfrak{p} \subsetneq R$ a prime ideal such that $I \subset \mathfrak{p}$. Prove that $r(I) \subset \mathfrak{p}$.

Problem 2. Show that if $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}\right\}$ are pairwise coprime ideals of R (that is, $\mathfrak{a}_{i}+\mathfrak{a}_{j}=R$ for each $i \neq j$) then:

$$
\bigcap_{i=1}^{n} \mathfrak{a}_{i}=\mathfrak{a}_{1} \mathfrak{a}_{2} \ldots \mathfrak{a}_{n} .
$$

(Hint: Show that \mathfrak{a}_{n} and the product ideal $\mathfrak{a}_{1} \ldots \mathfrak{a}_{n-1}$ are coprime and induct on $n \geq 2$. The case $n=2$ was proven in Lecture 26)

Problem 3. Assume that R is Noetherian. Prove that so is $R[[x]]$ (i.e., power series with coefficients over R).

Problem 4. Assume that R is Noetherian. For any ideal I, prove that there exists $n \geq 1$ such that $(r(I))^{n} \subset I$.

Problem 5. Assume (R, \mathfrak{m}) is a local Noetherian ring of has dimension zero (so each prime ideal of R is maximal) with $\mathfrak{m}^{n}=(0)$ for some $n \geq 1$. This problem shows that R is Artinian (completing the proof given in class).
(i) Consider the successive quotients $M_{j}:=\mathfrak{m}^{j} / \mathfrak{m}^{j+1}$ for each $j=0, \ldots, n$. They are vector spaces over the field $k=R / \mathfrak{m}$. Show that they have finite dimension (Hint: They are also R-modules).
(ii) Fix any descending chain of ideals of R, and consider the $n+1$ chains of ideals obtained by intersecting each member of the chain with \mathfrak{m}^{j} for $j=0, \ldots, n$. Show that these chains stabilize (Hint: For each $j<n$, consider the successive quotients and produce a descending chain of k-vector spaces that stabilizes. Show that these vector spaces have finite dimension. Notice that for $j=n$, the chain consists of only the zero ideal.)
(iii) Use descending induction on $j=0, \ldots, n$ and the previous item to conclude the original descending chain of ideals stabilizes.
(iv) In particular for $j=0$, the previous item confirms the descending chain condition holds for R, so R is Artinian.

Problem 6. Prove that a finite direct product of Artinian rings is Artinian. (Hint: Show that the ideals of such a product are products of ideals.)

Problem 7. Let R be an Artinian ring. Show that the nilradical \mathcal{N} is a nilponent ideal, that is, we can find an integer $n \geq 0$ with $\mathcal{N}^{n}=(0)$. (Hint: Consider the descending chain of ideals $\mathcal{N} \supseteq \mathcal{N}^{2} \supseteq \mathcal{N}^{3} \supseteq \ldots$ and let \mathfrak{a} be the ideal where the chain stabilizes. Assuming $\mathfrak{a} \neq(0)$, consider the set \mathscr{S} of ideals \mathfrak{b} of R with $\mathfrak{a b} \neq(0)$. Use the minimal element I of \mathscr{S} to find elements $x \in I$ and $y \in \mathfrak{a}$ with $x=x y$. This will lead you to a contradiction.)

Problem 8. Let M be an Artinian R-module. That is, for every descending chain of submodules $M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$, there exists $\ell \geq 0$ such that $M_{\ell}=M_{\ell+1}=\ldots$. Assume there is an injective R-linear map $f: M \rightarrow M$. Prove that f is an isomorphism.

Problem 9. Show that an ideal $\mathfrak{q} \subset R$ is primary if, and only if, every zero divisor in R / \mathfrak{q} is nilpotent.

Problem 10. Let $R=\mathbb{K}[x, y]$ where \mathbb{K} is any field and let $\mathfrak{q}=\left(x, y^{2}\right)$.
(i) Show that $r(\mathfrak{q})=(x, y)$.
(ii) Show that \mathfrak{q} is a primary ideal using the definition (i.e., for any product $f g \in \mathfrak{q}$ with $g \notin \mathfrak{q}$ we can find $n \geq 1$ with $\left.f^{n} \in \mathfrak{q}\right)$.
(iii) Show that $(x, y)^{2} \subsetneq \mathfrak{q}$.

Problem 11. Consider the quotient ring $R=\mathbb{K}[x, y, y] /\left(x y-z^{2}\right)$ and the ideal \mathfrak{p} of R with generators $\{\bar{x}, \bar{y}\}$.
(i) Show that \mathfrak{p} is a prime ideal (Hint: Show that the quotient R / \mathfrak{p} is a domain).
(ii) Show that \mathfrak{p}^{2} is not primary by showing that $\bar{z}^{2}=\bar{y} \bar{x} \in \mathfrak{p}^{2}$ and $\bar{x} \notin \mathfrak{p}^{2}$, but $y \notin r(\mathfrak{p})$.
(iii) Show that $\bar{y} \notin \mathfrak{p}^{2}$ and $x^{2} \in \mathfrak{p}^{2}$. Hence, the definition of primary ideal is not symmetric.

Problem 12. Let $\mathfrak{q} \subset R$ be an ideal. If its radical ideal $r(\mathfrak{q})$ is maximal, then show that \mathfrak{q} is primary.

Problem 13. Let $\mathfrak{m} \subset R$ be a maximal ideal. Prove that \mathfrak{m}^{n} is primary for every $n \geq 1$.
Problem 14. Prove that $(4, t) \subset \mathbb{Z}[t]$ is a primary ideal. Verify that $r((4, t))=(2, t)$ which is a maximal ideal in $\mathbb{Z}[t]$. Prove that $(2, t)^{2} \subsetneq(4, t) \subsetneq(2, t)$. Hence, a primary ideal need not be power of a prime.

Problem 15. Let $R=\mathbb{K}[x, y], I=\left(x^{2}, x y\right) \subset R$. Take $\mathfrak{p}=(x)$ and $\mathfrak{q}_{n}=\left(x^{2}, x y, y^{n}\right)$ for each $n \geq 2$. Prove that
(i) \mathfrak{p} is a prime ideal. Each \mathfrak{q}_{n} is primary and $r\left(\mathfrak{q}_{n}\right)=(x, y)$.
(ii) $\mathfrak{p} \cap \mathfrak{q}_{n}=I$.

Hence, we have infinitely many distinct primary decompositions. Notice that they all have the same set of primes $\{(x),(x, y)\}$.

