ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 10

In all problems below, we assume R is a commutative ring and \mathbb{K} is a field.
If R is a PID, and M is an R-module, the rank of M is defined as the rank of the free module $M / M_{\text {tor }}$ where $M_{\text {tor }}$ is the submodule of M consisting of all torsion elements of M.

Problem 1. Let $\mathfrak{a} \subset R$ be an ideal. Prove that

$$
r(\mathfrak{a})=\bigcap_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \mathfrak{p}
$$

Problem 2. Assume R is Noetherian and let $\mathfrak{p} \subset R$ be a prime ideal. Prove that $R_{\mathfrak{p}}$ is Artinian if, and only if \mathfrak{p} is a minimal prime ideal of R.

Problem 3. Consider a primary ideal \mathfrak{q} in R with radical $r(\mathfrak{q})=\mathfrak{p}$. Let $S \subsetneq R$ be a multiplicatively closed set.
(i) Prove that $S \cap \mathfrak{q} \neq \emptyset$ if, and only if, $S \cap \mathfrak{p} \neq \emptyset$.
(ii) Assume that $S \cap \mathfrak{p}=\emptyset$. Show that $S^{-1} \mathfrak{q}$ is a primary ideal in $S^{-1} R$ and $r\left(S^{-1} \mathfrak{q}\right)=S^{-1} \mathfrak{p}$ in $S^{-1} R$.

Problem 4. Prove the following equality is true in the ring $\mathbb{K}[x, y]$, where \mathbb{K} is any field.

$$
\left(x^{2}, y\right) \cap\left(x, y^{2}\right)=(x, y)^{2}
$$

Prove that $(x, y)^{2} \subset \mathbb{K}[x, y]$ is a primary ideal. (Hence, primary does not imply irreducible.)
Problem 5. Assume R is an integral domain. Prove that an ideal \mathfrak{a} is free as an R-module if and only if \mathfrak{a} is principal (i.e. admits one generator).

Problem 6.

Let R be an integral domain and let \mathbb{K} be the field of fractions of R.
(i) Let M be a finitely generated R-module and let V be the vector space over \mathbb{K} obtained from M by extension of scalars (i.e. $V=S^{-1} M$ where $S=R \backslash\{0\}$). Prove that the rank of M is equal to the dimension of V over \mathbb{K}.
(ii) If M is a free R-module, show that any two maximal linear independent subsets of M have the same cardinality.

Problem 7. Assume that for all finitely generated free modules M over R with rank n we have that every submodule of M is free of rank $\leq n$. Prove that R is a PID.

Problem 8. Prove that $\left(\mathbb{Q}_{>0}, *\right)$ is a free \mathbb{Z}-module and determine a basis for it.

Problem 9. Fix a module M over R and let $T: M \rightarrow M$ be an R-linear map. Prove that M is a module over $R[x]$ with scalar multiplication $f(x) \cdot m=f(T)(m)$ for all m in M.

Problem 10. Let \mathbb{K} be a field and $g(x) \in \mathbb{K}[x] \backslash\{0\}$. Show that $\mathbb{K}[x] /(g(x))$ is a \mathbb{K}-vector space of dimension $\operatorname{deg}(g)$.

Problem 11. Prove or disprove:
(i) $(\mathbb{Q},+)$ is a free \mathbb{Z}-module; (Hint: There are non-zero \mathbb{Z}-linear maps from any free \mathbb{Z} module to \mathbb{Z}.)
(ii) $\mathbb{K}(x)$ is a free $\mathbb{K}[x]$-module for any field \mathbb{K}.

Problem 12. Assume M_{1}, \ldots, M_{r} are R-modules and let $N_{i} \subset M_{i}$ be submodules. Show that:

$$
\frac{\bigoplus_{i=1}^{r} M_{i}}{\bigoplus_{i=1}^{r} N_{i}} \simeq \bigoplus_{i=1}^{r} \frac{M_{i}}{N_{i}}
$$

Problem 13. Consider a PID R and let $\mathbf{v}=\left(a_{1}, \ldots, a_{n}\right)$ be a vector in R^{n}. Prove that we can extend \mathbf{v} to a basis of the free module R^{n} if and only if the ideal generated by $\left\{a_{1}, \ldots, a_{n}\right\}$ is the unit ideal.

Problem 14. (Modules over non commutative rings) The following exercise provides an example of a non-commutative ring A for which $A^{n} \simeq A^{m}$ for all $m, n \in \mathbb{N}$.

Let V be an infinite-dimensional vector space over \mathbb{R} with a countable basis $\left\{v_{n}: n \in \mathbb{N}\right\}$. Let $A=\operatorname{End}_{\mathbb{R}} V$. Let $T, T^{\prime} \in A$ be defined by $T\left(v_{2 n}\right)=v_{n}, T\left(v_{2 n-1}\right)=0, T^{\prime}\left(v_{2 n}\right)=0$, $T^{\prime}\left(v_{2 n-1}\right)=v_{n}$ for all $n \geq 1$. Prove that $\left\{T, T^{\prime}\right\}$ is a basis for A as a left A-module. Thus, $A \simeq A^{2}$. Prove that $A^{n} \simeq A^{m}$ for any $m, n \in \mathbb{N}$.

Problem 15. (Free modules with infinite rank)

Let R be a PID and let M be a free R-module. Let $F \neq(0)$ be a submodule of M. We aim to show that F is free. Let $\left\{v_{i}\right\}_{i \in I}$ be a basis for M. For each $J \subseteq I$, let $M_{J}=R\left(v_{j}: j \in J\right)$.
(i) Consider the sets $F_{J}=F \cap M_{J}$ where $J \subseteq I$, and the set of triples
$S=\left\{\left(F_{J}, J^{\prime}, w\right): J \subseteq I, F_{J}\right.$ is free $, w: J^{\prime} \rightarrow F_{J}$ is a basis for F_{J} indexed by $\left.J^{\prime} \subseteq J\right\}$.
Show that S is a non-empty set.
(ii) Show that the following relation \leq on S defines a partial order on S :

$$
\left(F_{J}, J^{\prime}, w\right) \leq\left(F_{K}, K^{\prime}, u\right) \text { if } J \subseteq K, J^{\prime} \subseteq K^{\prime} \text { and } u_{\left.\right|_{J^{\prime}}}=w
$$

In other words, the basis u for F_{K} is an extension of the basis w for F_{J}.
(iii) Use Zorn's Lemma on S and show that a maximal element of S has $J=I$, so $F_{J}=F$. (Hint: Use the technique in the proof of Theorem 2 of Lecture 30 (the case where $\operatorname{rank}(M)<\infty)$.)
(iv) Conclude that there exists a basis for F indexed by a subset of I (so the rank of a module is well-defined and $\operatorname{rank}(F) \leq \operatorname{rank}(M)$.)

Problem 16. If R is a PID, and M, N are finitely generated R-modules of rank m and n respectively, prove that $M \oplus N$ is a finitely generated R-module of rank $m+n$. Describe the torsion component of $M \oplus N$.

Problem 17. Let $R=\mathbb{K}[X, Y]$ be a polynomial ring in two variables over \mathbb{K}. Give an example of a module over R, which is finitely generated and torsion free, but not free. Do the same for $R=\mathbb{Z}[X]$.

