
ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 11

In all problems below, we assume R is a commutative ring and K is a field.
Two n× n matrices A and C over K are similar if A = G−1CG for some G ∈ GLn(K)

Problem 1. Let R be a PID, a ∈ Rr {0} and M = R/(a). Let p be a prime of R dividing
a, and let n be the highest power of p dividing a. Prove that

pk−1M/pkM '

{
R/(p) for k = 1, . . . , n

0 otherwise.

Problem 2. Let T be the linear operator on V = C2 whose matrix is

(
2 1
0 1

)
. Is the

corresponding C[X]-module cyclic?

Problem 3. Classify all abelian groups of order 32, 36 and 200.

Problem 4. Prove or disprove:

(i) (Z/8Z)∗ ' (Z/3Z)∗ × (Z/3Z)∗;

(ii) (Z/16Z)∗ ' (Z/3Z)∗ × (Z/5Z)∗;

Problem 5. (Diagonalization of matrices) Prove that A ∈ Matn×n(K) is diagonalizable
over K (i.e., similar to a diagonal matrix), if and only the minimal polynomial of A has no
repeated roots.

Problem 6. Find all possible rational normal forms and Jordan forms of a matrix A whose
characteristic polynomial is (X + 2)2(X − 5)3.

Problem 7. Find all possible rational normal forms and Jordan forms of 8 × 8 matrices
over C whose minimal polynomial is X2(X − 1)3.

Problem 8. If N is a k× k nilpotent matrix such that Nk = 0 but Nk−1 6= 0, prove that N
is similar to its transpose. (Hint: Prove it for a Jordan block matrix N of size k by finding
a permutation matrix P with NT = PNP−1)

Problem 9. Prove that two 2 × 2 matrices over K are similar if and only if they have the
same minimal polynomial.

Problem 10. Prove that two 3× 3 matrices over K are similar if and only if they have the
same minimal and characteristic polynomials.
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Problem 11. Prove the Cayley-Hamilton Theorem over any commutative ring R: Let
A ∈ Matn×n(R). If f(X) = det(X In − A), then f(A) = 0.
(Hint: Use the identity Cof(B)B = B Cof(B) = det(B)In for any n × n matrix B, where
Cof(B) is the cofactor matrix of B).

Problem 12. Let A,B be two n× n matrices over a field K. Assume that AB = BA and
both A and B are diagonalizable (i.e. has a basis of eigenvectors). Show that A and B can
be simmultanously diagonalized. (Hint: By induction on n. For the inductive step you will
need to show that any eigenspace Eλ(A) = {v ∈ Kn : Av = λ v} is invariant under B.)

Problem 13. (Nakayama’s Lemma v2)
Consider a finitely generated R-module M and an ideal I of R included in the Jacobson

radical of R (see Problem 8 on Homework 7). If IM = M , prove that M = 0.

Problem 14. (Nakayama’s Lemma v3)
Consider a finitely generated R-module M and an ideal I of R. If M = IM , then prove

that there exists an element a ∈ I with m = am for all m ∈M (equivalently, (1−a)M = 0.).

(Hint for Problems 13 and 14: Follow the proof of Nakayama’s lemma discussed in Lecture
34.)

Problem 15. (Nakayama’s Lemma v3 fails over non-commutative rings)
Consider a non-commutative ring A with no zero divisors and let I be a f.g. proper non-

zero idempotent ideal (i.e., I2 = I). Show that Nakayama’s Lemma v3 from Problem 14
fails for M = I.

(Note: Examples of such rings arise in Lie Theory. We can take g to be a perfect Lie
algebra and let I = gA be the augmentation ideal of its enveloping algebra A = U(g))

Problem 16. (An application of Nakayama’s lemma due to Vasconcelos)
The goal of this exercise is to extend Problem 15 of Homework 8 to the non-Noetherian

case. More precisely, assume M is a finitely generated R-module and let f : M → M be a
surjective R-linear map. We wish to show that f is injective, and hence an isomorphism.

(i) Show that M becomes an R[x] mode via P (x) ·m = P (f)(m).

(ii) Show that M is a finitely generated R[x]-module with the structure defined in (i).

(iii) Show that ideal I = (x) ( R[x] satisfies IM = M .

(iv) Use Problem 14 to find a polynomial P (x) ∈ I with m = P (x)m for all m ∈M .

(v) Use item (iv) to conclude that Ker(f) = {0}.

Problem 17. Show that bases of vector spaces of any dimension (defined as linearly inde-
pendent spanning sets) are maximal linearly independent sets.
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Problem 18. Consider a K-vector space V and let W ⊂ V be a subspace. Show that:

(V/W )∗ = {ξ ∈ V ∗ : ξ|W = 0}.
Problem 19. Consider a collection {Vi : i ∈ I} of finite-dimensional K-vector spaces and
let W be a vector space.

(i) Prove that HomK(
⊕
i∈I

Vi,W ) '
∏
i∈I

HomK(Vi,W ).

(ii) Prove that (
⊕
i∈I

Vi)
∗ '

∏
i∈I

(Vi)
∗.

(In both items, direct products/sums of vector spaces are defined as the corresponding
operations on K-modules.)

Problem 20. Let V and W be two finite-dimensional K vector spaces, with bases BV and
BW , respectively. Assume dimV = n and dimW = m. Consider any linear transformation
f : V → W and its corresponding dual map f ∗ : W ∗ → V ∗.

(i) Show that if A = [f ]BV ,BW
is the m× n matrix representative of f with respect to the

bases BV and BW , then AT = [f ∗](BW )∗,(BV )∗ is the matrix representative of f ∗ with
respect to the dual bases (BW )∗ and (BV )∗.

(ii) Show that W ∗ ' (Im f)∗⊕Ker(f ∗), where we view (Im f)∗ ⊂ W ∗ by extending a basis
of Im f to a basis of W and taking duals.

(iii) Show that the images of f and f ∗ have the same dimension, and conclude from this
that the (column) ranks of A and AT agree.

Problem 21. Given a K-vector space V , consider the dual vector space to V ∗. We denote
it by (V ∗)∗ and call it the “double dual” of V . Show that we can view V as a subspace of its
double dual by writing an explicit injective linear map V ↪→ (V ∗)∗. If V is finite dimensional,
conclude that V ' (V ∗)∗.


