ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 11

In all problems below, we assume R is a commutative ring and \mathbb{K} is a field. Two $n \times n$ matrices A and C over \mathbb{K} are similar if $A=G^{-1} C G$ for some $G \in \mathrm{GL}_{n}(\mathbb{K})$

Problem 1. Let R be a PID, $a \in R \backslash\{0\}$ and $M=R /(a)$. Let p be a prime of R dividing a, and let n be the highest power of p dividing a. Prove that

$$
p^{k-1} M / p^{k} M \simeq \begin{cases}R /(p) & \text { for } k=1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2. Let T be the linear operator on $V=\mathbb{C}^{2}$ whose matrix is $\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$. Is the corresponding $\mathbb{C}[X]$-module cyclic?

Problem 3. Classify all abelian groups of order 32, 36 and 200.
Problem 4. Prove or disprove:
(i) $(\mathbb{Z} / 8 \mathbb{Z})^{*} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{*} \times(\mathbb{Z} / 3 \mathbb{Z})^{*}$;
(ii) $(\mathbb{Z} / 16 \mathbb{Z})^{*} \simeq(\mathbb{Z} / 3 \mathbb{Z})^{*} \times(\mathbb{Z} / 5 \mathbb{Z})^{*}$;

Problem 5. (Diagonalization of matrices) Prove that $A \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ is diagonalizable over \mathbb{K} (i.e., similar to a diagonal matrix), if and only the minimal polynomial of A has no repeated roots.

Problem 6. Find all possible rational normal forms and Jordan forms of a matrix A whose characteristic polynomial is $(X+2)^{2}(X-5)^{3}$.

Problem 7. Find all possible rational normal forms and Jordan forms of 8×8 matrices over \mathbb{C} whose minimal polynomial is $X^{2}(X-1)^{3}$.

Problem 8. If N is a $k \times k$ nilpotent matrix such that $N^{k}=0$ but $N^{k-1} \neq 0$, prove that N is similar to its transpose. (Hint: Prove it for a Jordan block matrix N of size k by finding a permutation matrix P with $N^{T}=P N P^{-1}$)

Problem 9. Prove that two 2×2 matrices over \mathbb{K} are similar if and only if they have the same minimal polynomial.

Problem 10. Prove that two 3×3 matrices over \mathbb{K} are similar if and only if they have the same minimal and characteristic polynomials.

Problem 11. Prove the Cayley-Hamilton Theorem over any commutative ring R : Let $A \in \operatorname{Mat}_{n \times n}(R)$. If $f(X)=\operatorname{det}\left(X I_{n}-A\right)$, then $f(A)=0$.
(Hint: Use the identity $\operatorname{Cof}(B) B=B \operatorname{Cof}(B)=\operatorname{det}(B) I_{n}$ for any $n \times n$ matrix B, where $\operatorname{Cof}(B)$ is the cofactor matrix of $B)$.

Problem 12. Let A, B be two $n \times n$ matrices over a field \mathbb{K}. Assume that $A B=B A$ and both A and B are diagonalizable (i.e. has a basis of eigenvectors). Show that A and B can be simmultanously diagonalized. (Hint: By induction on n. For the inductive step you will need to show that any eigenspace $E_{\lambda}(A)=\left\{v \in \mathbb{K}^{n}: A v=\lambda v\right\}$ is invariant under B.)

Problem 13. (Nakayama's Lemma v2)

Consider a finitely generated R-module M and an ideal I of R included in the Jacobson radical of R (see Problem 8 on Homework 7). If $I M=M$, prove that $M=0$.

Problem 14. (Nakayama's Lemma v3)

Consider a finitely generated R-module M and an ideal I of R. If $M=I M$, then prove that there exists an element $a \in I$ with $m=a m$ for all $m \in M$ (equivalently, $(1-a) M=0$.).
(Hint for Problems 13 and 14: Follow the proof of Nakayama's lemma discussed in Lecture 34.)

Problem 15. (Nakayama's Lemma v3 fails over non-commutative rings)

Consider a non-commutative ring A with no zero divisors and let I be a f.g. proper nonzero idempotent ideal (i.e., $I^{2}=I$). Show that Nakayama's Lemma v3 from Problem 14 fails for $M=I$.
(Note: Examples of such rings arise in Lie Theory. We can take \mathfrak{g} to be a perfect Lie algebra and let $I=\mathfrak{g} A$ be the augmentation ideal of its enveloping algebra $A=U(\mathfrak{g}))$

Problem 16. (An application of Nakayama's lemma due to Vasconcelos)

The goal of this exercise is to extend Problem 15 of Homework 8 to the non-Noetherian case. More precisely, assume M is a finitely generated R-module and let $f: M \rightarrow M$ be a surjective R-linear map. We wish to show that f is injective, and hence an isomorphism.
(i) Show that M becomes an $R[x]$ mode via $P(x) \cdot m=P(f)(m)$.
(ii) Show that M is a finitely generated $R[x]$-module with the structure defined in (i).
(iii) Show that ideal $I=(x) \subsetneq R[x]$ satisfies $I M=M$.
(iv) Use Problem 14 to find a polynomial $P(x) \in I$ with $m=P(x) m$ for all $m \in M$.
(v) Use item (iv) to conclude that $\operatorname{Ker}(f)=\{0\}$.

Problem 17. Show that bases of vector spaces of any dimension (defined as linearly independent spanning sets) are maximal linearly independent sets.

Problem 18. Consider a \mathbb{K}-vector space V and let $W \subset V$ be a subspace. Show that:

$$
(V / W)^{*}=\left\{\xi \in V^{*}: \xi_{\left.\right|_{W}}=0\right\}
$$

Problem 19. Consider a collection $\left\{V_{i}: i \in I\right\}$ of finite-dimensional \mathbb{K}-vector spaces and let W be a vector space.
(i) Prove that $\operatorname{Hom}_{\mathbb{K}}\left(\bigoplus_{i \in I} V_{i}, W\right) \simeq \prod_{i \in I} \operatorname{Hom}_{\mathbb{K}}\left(V_{i}, W\right)$.
(ii) Prove that $\left(\bigoplus_{i \in I} V_{i}\right)^{*} \simeq \prod_{i \in I}\left(V_{i}\right)^{*}$.
(In both items, direct products/sums of vector spaces are defined as the corresponding operations on \mathbb{K}-modules.)

Problem 20. Let V and W be two finite-dimensional \mathbb{K} vector spaces, with bases B_{V} and B_{W}, respectively. Assume $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$. Consider any linear transformation $f: V \rightarrow W$ and its corresponding dual map $f^{*}: W^{*} \rightarrow V^{*}$.
(i) Show that if $A=[f]_{B_{V}, B_{W}}$ is the $m \times n$ matrix representative of f with respect to the bases B_{V} and B_{W}, then $A^{T}=\left[f^{*}\right]_{\left(B_{W}\right)^{*},\left(B_{V}\right)^{*}}$ is the matrix representative of f^{*} with respect to the dual bases $\left(B_{W}\right)^{*}$ and $\left(B_{V}\right)^{*}$.
(ii) Show that $W^{*} \simeq(\operatorname{Im} f)^{*} \oplus \operatorname{Ker}\left(f^{*}\right)$, where we view $(\operatorname{Im} f)^{*} \subset W^{*}$ by extending a basis of $\operatorname{Im} f$ to a basis of W and taking duals.
(iii) Show that the images of f and f^{*} have the same dimension, and conclude from this that the (column) ranks of A and A^{T} agree.

Problem 21. Given a \mathbb{K}-vector space V, consider the dual vector space to V^{*}. We denote it by $\left(V^{*}\right)^{*}$ and call it the "double dual" of V. Show that we can view V as a subspace of its double dual by writing an explicit injective linear map $V \hookrightarrow\left(V^{*}\right)^{*}$. If V is finite dimensional, conclude that $V \simeq\left(V^{*}\right)^{*}$.

