ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 12

In all problems below, we assume R is a commutative ring and \mathbb{K} is a field.
Problem 1. Show that given two \mathbb{K}-vector spaces V_{1} and V_{2}, the tensor product $V_{1} \otimes_{\mathbb{K}} V_{2}$ defined via universal property (see Lecture 36) is unique up to unique isomorphism. Conclude from this that for any \mathbb{K}-vector space V, we have

$$
V \otimes_{\mathbb{K}} \mathbb{K} \simeq \mathbb{K} \otimes_{\mathbb{K}} V \simeq V
$$

Problem 2. Consider three \mathbb{K}-vector spaces V_{1}, V_{2} and W. Show that:

$$
\left(V_{1} \oplus V_{2}\right) \otimes_{\mathbb{K}} W \simeq\left(V_{1} \otimes_{\mathbb{K}} W\right) \oplus\left(V_{2} \otimes_{\mathbb{K}} W\right)
$$

Problem 3. Consider two matrices $X_{1} \in \operatorname{Mat}_{m_{1} \times n_{1}}(\mathbb{K})$ and $X_{2}=\operatorname{Mat}_{m_{2} \times n_{2}}(\mathbb{K})$ representing linear transformations $f_{1}: V_{1} \rightarrow W_{1}$ and $f_{2}: V_{2} \rightarrow W_{2}$ with $\operatorname{dim} V_{i}=n_{i}$ and $\operatorname{dim} W_{i}=m_{i}$ for $i=1,2$. Write down the matrix representing $f_{1} \otimes f_{2}:\left(V_{1} \otimes_{\mathbb{K}} V_{2}\right) \rightarrow\left(W_{1} \otimes_{\mathbb{K}} W_{2}\right)$ using the matrices X_{1} and X_{2}, as in Lecture 36.

Problem 4. Apply the construction from Problem 3 to the following matrices:

$$
X_{1}=\left(\begin{array}{cc}
0 & -1 \\
0 & -1
\end{array}\right) \quad \text { and } \quad X_{2}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right) .
$$

Problem 5. Consider two square matrices A_{1} and A_{2} of sizes $n \times n$ and $m \times m$, respectively. Let $\left\{\lambda_{i}: i=1, \ldots, n\right\}$ and $\left\{\mu_{j}: j=1, \ldots, m\right\}$ be the eigenvalues of A_{1} and A_{2}, counted with multiplicity. Show that the eigenvalues of the matrix $A_{1} \otimes A_{2}$ (constructed in Problem 3), counted with multiplicity, are given by $\left\{\lambda_{i} \mu_{j}: i=1, \ldots, n, j=1, \ldots m\right\}$.

Problem 6. Consider three \mathbb{K}-vector spaces U, V, W. Assume V is finite-dimensional. Show that $\operatorname{Hom}_{\mathbb{K}}(V, U) \otimes W \simeq \operatorname{Hom}_{\mathbb{K}}(V, U \otimes W)$ by writing an explicit isomorphism. (Hint: When $U=\mathbb{K}$, the statement is the Hom-tensor adjointness theorem)

Problem 7. Consider two finite-dimensional \mathbb{K}-vector spaces V and W, each with two bases B_{1}, B_{1}^{\prime} and B_{2}, B_{2}^{\prime}, respectively. Describe the change of bases matrix for $V \otimes_{\mathbb{K}} W$ with respect to the bases $B_{1} \times B_{2}$ and $B_{1}^{\prime} \times B_{2}^{\prime}$ (ordered appropriately).

Problem 8. Consider \mathbb{K}-vector spaces U, V, W. Using the universal property of tensor products show that
(i) there exists a unique \mathbb{K}-linear isomorphism $\phi: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} W \otimes_{\mathbb{K}} V$ satisfying $\phi(v \otimes w)=w \otimes v$ for all $v \in V, w \in W$;
(ii) there exists a unique \mathbb{K}-linear isomorphism $\beta:\left(U \otimes_{\mathbb{K}} V\right) \otimes_{\mathbb{K}} W \xrightarrow{\simeq} U \otimes_{\mathbb{K}}\left(V \otimes_{\mathbb{K}} W\right)$ satisfying $\beta((u \otimes v) \otimes w)=u \otimes(v \otimes w)$.

Problem 9. Consider two finite-dimensional \mathbb{K}-vector spaces V and W, with $\operatorname{dim} V=n$ and $\operatorname{dim} W=m$. Consider the following composition of isomorphisms:

$$
\alpha: \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right) \xrightarrow{\simeq} V \otimes_{\mathbb{K}} W \xrightarrow{\phi} W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right)
$$

where the first and the last maps arise from Hom-tensor adjointness, and ϕ is the map defined in Problem 8 (i). Show that under the identifications $\operatorname{Mat}_{m \times n}(\mathbb{K}) \simeq \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right)$ and $\operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right) \simeq \operatorname{Mat}_{n \times m}(\mathbb{K})$, the map α corresponds to taking the transpose of a matrix.

Problem 10. (Rank of tensors) Consider two \mathbb{K}-vector spaces V and W. For any $u \in V \otimes_{\mathbb{K}} W$ we define the rank of u as the smallest non-negative integer r for which u admits an expression:

$$
\begin{equation*}
u=\sum_{i=1}^{r} v_{i} \otimes w_{i} \quad v_{i} \in V, w_{i} \in W \tag{1}
\end{equation*}
$$

(i) Assume that $\operatorname{rank}(u)=r$ and write u as in (1). Show that the sets $\left\{v_{i}: i=1, \ldots, r\right\}$ and $\left\{w_{i}: i=1, \ldots, r\right\}$ are linearly independent subsets of V and W, respectively.
(ii) Conversely, if $u=\sum_{i=1}^{s} a_{i} \otimes b_{i}$ where the sets $\left\{a_{i}: i=1, \ldots, s\right\} \subset V$ and $\left\{b_{i}: i=\right.$ $1, \ldots, s\} \subset W$ are linearly independent, $\operatorname{then} \operatorname{rank}(u)=s$.
(iii) Assume V and W are finite-dimensional. Hom-tensor adjointness yields isomophisms

$$
\varphi_{1}: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(V^{*}, W\right), \quad \varphi_{2}: W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}\left(W^{*}, V\right) .
$$

Consider the isomorphism ϕ from Problem 8 item (i) and let $u_{1}=\varphi_{1}(u)$, and $u_{2}=$ $\left(\varphi_{2} \circ \phi\right)(u)$. Show that $\operatorname{rank}(u)=\operatorname{dim} \operatorname{Im}\left(u_{1}\right)=\operatorname{dim} \operatorname{Im}\left(u_{2}\right)$.
Problem 11. Let $k \in \mathbb{Z}_{\geq 1}$ and $v_{1}, \ldots, v_{k} \in V$. Show that $v_{1} \wedge \ldots \wedge v_{k} \in \bigwedge^{k} V$ is non-zero if, and only if, $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Problem 12. Let $P \in \operatorname{End}_{\mathbb{K}}(V)$ satisfying $P^{2}=P$ (i.e. P is a projection). Show that $V \simeq \operatorname{ker}(P) \oplus \operatorname{Im}(P)$.

Problem 13. Let S_{n} be the symmetric group of n letters and V be a \mathbb{K}-vector space. Show that we can define a unique left action of S_{n} on $T^{n}(V)$ satisfying that $\sigma \cdot\left(v_{1} \otimes \ldots \otimes v_{n}\right)=$ $v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}$ for each $\sigma \in S_{n}$ and each $v_{1}, \ldots, v_{n} \in V$. For each $\sigma \in S_{n}$ we let $\bar{\sigma}: T^{n}(V) \rightarrow T^{n}(V)$ be the unique linear map thus obtained.

Problem 14. ($S^{n}(V)$ as a subspace of $T^{n}(V)$)
Assume $\operatorname{char}(\mathbb{K})=0$ and consider $S: T^{n}(V) \rightarrow T^{n}(V)$ given by $S(\xi)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \bar{\sigma}(\xi)$, where $\bar{\sigma}(\xi)$ is defined as in Problem 13.
(i) Show that $S^{2}=S$ and, furthermore,
$\operatorname{ker}(S)=\left\langle v_{1} \otimes \ldots v_{n}-v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_{i} \otimes v_{i+2} \ldots \otimes v_{n}: 1 \leq i \leq n-1, v_{1}, \ldots, v_{n} \in V\right\rangle$.
(ii) Conclude that $\operatorname{Im}(S) \simeq S^{n}(V)$ as \mathbb{K}-vector spaces.

Problem 15. ($\bigwedge^{n}(V)$ as a subspace of $\left.T^{n}(V)\right)$
Assume $\operatorname{char}(\mathbb{K})=0$ and consider $A: T^{n}(V) \rightarrow T^{n}(V)$ given by $A(\xi)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \bar{\sigma}(\xi)$, where $\bar{\sigma}(\xi)$ is defined as in Problem 13.
(i) Show that $A^{2}=A$ and furthermore,
$\operatorname{ker}(A)=\left\langle v_{1} \otimes \ldots v_{n}+v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_{i} \otimes v_{i+2} \ldots \otimes v_{n}: 1 \leq i \leq n-1, v_{1}, \ldots, v_{n} \in V\right\rangle$.
(ii) Conclude that $\operatorname{Im}(A) \simeq \bigwedge^{n}(V)$ as \mathbb{K}-vector spaces.

Problem 16. Prove the following isomorphisms of \mathbb{K}-vector spaces for all $n \in \mathbb{Z}_{>0}$:
(i) $T^{n}(V \oplus W) \simeq \bigoplus_{k=0}^{n} \bigoplus_{\substack{i_{1}>0, i_{2}, \ldots, i_{k}>0 \\ i_{1}+\ldots, i_{k}=n}}\left(T^{i_{1}}(V) \otimes T^{i_{2}}(W) \otimes T^{i_{3}}(V) \otimes \ldots\right)$, (i.e., alternate tensor powers of V and W, allowing to start from V or W, where the sum of the powers equals n)
(ii) $S^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} S^{i}(V) \otimes S^{n-i}(W)$,
(iii) $\bigwedge^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} \bigwedge^{i}(V) \otimes \bigwedge^{n-i}(W)$.

Problem 17. Let $v_{1}, \ldots, v_{r} \in V$ be a collection of linearly independent vectors. Let $\omega \in \bigwedge^{p}(V)$. Show that ω can be written as $\omega=\sum_{i=1}^{r} v_{i} \wedge \psi_{i}$ for some $\psi_{1}, \ldots \psi_{r} \in \bigwedge^{p-1}(V)$ if, and only if, $v_{1} \wedge \ldots \wedge v_{r} \wedge \omega=0 \in \bigwedge^{p+r}(V)$.

Problem 18. Show that the multiplication maps $S^{k}(V) \times S^{\ell}(V) \rightarrow S^{k+\ell}(V)$ and $\bigwedge^{k}(V) \times$ $\bigwedge^{\ell}(V) \rightarrow \bigwedge^{k+\ell}(V)$ defined in Lecture 38 are well-defined and are obtained from the multiplication map $\phi: T^{k}(V) \times T^{\ell}(V) \rightarrow T^{k+\ell}(V)$ composed with the corresponding natural projections to the symmetric and exterior powers of V.

Problem 19. Assume char $(\mathbb{K})=0$ and consider the map $\varphi: S^{k}(V) \times S^{\ell}(V) \rightarrow S^{k+\ell}(V)$ defined on the indecomposable tensors via

$$
\varphi(\xi, \eta)=\frac{1}{\binom{k+\ell}{k}} \sum_{\sigma \in G} \sigma(\xi \otimes \eta) \quad \text { for } G=S_{k+\ell} /\left(S_{k} \times S_{\ell}\right), \xi \in S^{k}(V), \eta \in S^{\ell}(V)
$$

where we view $S_{k} \times S_{\ell} \subset S_{k+\ell}$ as permutations of $\{1, \ldots, k\}$ and $\{k+1, \ldots, k+\ell\}$.
(i) Check that φ is bilinear, so it yields a unique linear $\operatorname{map} \bar{\varphi}: S^{k}(V) \otimes S^{\ell}(V) \rightarrow S^{k+\ell}(V)$.
(ii) Show that $\bar{\varphi}$ defines an associative multiplication map on $S^{\bullet}(V)$.
(iii) Show that $\bar{\varphi}$ fits into the natural commutative diagram involving the multiplication map on $T^{\bullet}(V)$, the projection $T^{n}(V) \rightarrow S^{n}(V)$ and the inclusion $S^{n}(V) \hookrightarrow T^{n}(V)$
defined in Problem 14:

Problem 20. Prove that $V \otimes V \simeq S^{2}(V) \oplus \bigwedge^{2}(V)$ by writing the explicit isomorphisms.
Problem 21. Assume V is a vector space of dimension n (finite). Pick a basis $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ for V.
(i) Show that $\psi_{B}: \bigwedge^{n}(V) \rightarrow \mathbb{K}$ given by $\psi_{B}\left(\alpha\left(v_{1} \wedge \ldots \wedge v_{n}\right)\right)=\alpha$ is an isomorphism.
(ii) If B^{\prime} is another basis for V, and A is the change of bases matrix from B^{\prime} to B, show that $\psi_{B}(\xi)=\operatorname{det}(A) \psi_{B^{\prime}}(\xi)$ for all $\xi \in \bigwedge^{n}(V)$.

Problem 22. Assume char $(\mathbb{K})=0$. Consider a \mathbb{K}-linear map $f: V \rightarrow W$ and the associated maps $S^{n}(f): S^{n}(V) \rightarrow S^{n}(V)$ and $\bigwedge^{n}(f): \bigwedge^{n}(V) \rightarrow \bigwedge^{n}(V)$.
(i) Show that these constructions are compatible with compositions, i.e., if $f: V \rightarrow U$, and $g: U \rightarrow W$ are \mathbb{K}-linear, then

$$
S^{n}(g \circ f)=S^{n}(g) \circ S^{n}(f) \quad \text { and } \quad \bigwedge^{n}(g \circ f)=\bigwedge^{n}(g) \circ \bigwedge^{n}(f)
$$

(ii) Let $n=\operatorname{dim}(V)$ and pick $f \in \operatorname{End}_{\mathbb{K}}(V)$. Show that the following diagram commutes

Here, the bottom map is multiplication by $\operatorname{det}(f) \in \mathbb{K}$, and the vertical maps are any fixed isomorphism from Problem 21.
(iii) In particular, if $V=U=W$ have dimension n and f and g correspond to two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, show that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Problem 23. Assume char $(\mathbb{K})=0$. Prove the row expansion formula for determinants of square matrices using $\operatorname{det}(f)=\bigwedge^{n}(f): \bigwedge^{n}\left(\mathbb{K}^{n}\right) \rightarrow \bigwedge^{n}\left(\mathbb{K}^{n}\right)$ where $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is multiplication by the corresponding matrix.

Problem 24. (Determinants vs. Permanents of singular matrices)

Assume $\operatorname{char}(\mathbb{K})=0$ and consider the endomorphism $f: \mathbb{K}^{2} \rightarrow \mathbb{K}^{2}$ defined by multiplication by the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
(i) Compute $\bigwedge^{2}(f): \bigwedge^{2}\left(\mathbb{K}^{2}\right) \rightarrow \bigwedge^{2}\left(\mathbb{K}^{2}\right)$.
(ii) Compute $S^{2}(f): S^{2}\left(\mathbb{K}^{2}\right) \rightarrow S^{2}\left(\mathbb{K}^{2}\right)$.
(iii) Compute $S^{3}(f): S^{3}\left(\mathbb{K}^{2}\right) \rightarrow S^{3}\left(\mathbb{K}^{2}\right)$.

Problem 25. Let $X \in \mathrm{GL}_{n}(\mathbb{K})$. We say X admits a Gaussian decomposition if it can be written as a product

$$
X=X^{-} X^{0} X^{+},
$$

where X^{0} is a diagonal matrix, X^{+}is an upper triangular matrix (i.e., $X_{i j}^{+}=0$ for $i>j$) with ones along the diagonal, and X^{-}is an lower triangular matrix (i.e., $X_{i j}^{-}=0$ for $i<j$) with ones along the diagonal.
(i) Show that if X admits a Gaussian decomposition then it is unique. (Hint: Prove the uniqueness for diagonal matrices admitting a Gaussian decomposition.)
(ii) Show that a matrix $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{K})$ admits a Gaussian decomposition if, and only if, $a \neq 0$. Compute explicit formulas for X^{-}, X^{0} and X^{+}.

Problem 26*. Consider $X \in \mathrm{GL}_{n}(\mathbb{K})$. The goal of this exercise is to show that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.
(i) Show that if X admits a Gaussian decomposition, then all principal minors $\Delta_{1, \ldots, i}^{1, \ldots, i}$ (for $i=1, \ldots, n$) are non-zero.
(ii) If X admits a Gaussian decomposition, show that $X_{11}^{0}=X_{11}$ and $X_{i i}^{0}=\Delta_{1, \ldots, i}^{1, \ldots, i} / \Delta_{1, \ldots, i-1}^{1, \ldots, i-1}$ for all $i=2, \ldots, n$.
(iii) Furthermore, prove that $X_{j i}^{-}=\Delta_{1, \ldots, i}^{1, \ldots, i-1, j} / \Delta_{1, \ldots, i}^{1, \ldots, i}$ and $X_{i j}^{+}=\Delta_{1, \ldots, i-1, j}^{1, \ldots, i} / \Delta_{1, \ldots, i}^{1, \ldots, i}$ for all $i \leq j$.
(iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.

