ALGEBRA I (MATH 6111 AUTUMN 2021) - HOMEWORK 12

In all problems below, we assume R is a commutative ring and \mathbb{K} is a field.

Problem 1. Show that given two K-vector spaces V_1 and V_2 , the tensor product $V_1 \otimes_{\mathbb{K}} V_2$ defined via universal property (see Lecture 36) is unique up to unique isomorphism. Conclude from this that for any K-vector space V, we have

$$V \otimes_{\mathbb{K}} \mathbb{K} \simeq \mathbb{K} \otimes_{\mathbb{K}} V \simeq V.$$

Problem 2. Consider three K-vector spaces V_1, V_2 and W. Show that:

$$(V_1 \oplus V_2) \otimes_{\mathbb{K}} W \simeq (V_1 \otimes_{\mathbb{K}} W) \oplus (V_2 \otimes_{\mathbb{K}} W).$$

Problem 3. Consider two matrices $X_1 \in \operatorname{Mat}_{m_1 \times n_1}(\mathbb{K})$ and $X_2 = \operatorname{Mat}_{m_2 \times n_2}(\mathbb{K})$ representing linear transformations $f_1: V_1 \to W_1$ and $f_2: V_2 \to W_2$ with dim $V_i = n_i$ and dim $W_i = m_i$ for i = 1, 2. Write down the matrix representing $f_1 \otimes f_2: (V_1 \otimes_{\mathbb{K}} V_2) \to (W_1 \otimes_{\mathbb{K}} W_2)$ using the matrices X_1 and X_2 , as in Lecture 36.

Problem 4. Apply the construction from Problem 3 to the following matrices:

$$X_1 = \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}$$
 and $X_2 = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.

Problem 5. Consider two square matrices A_1 and A_2 of sizes $n \times n$ and $m \times m$, respectively. Let $\{\lambda_i : i = 1, ..., n\}$ and $\{\mu_j : j = 1, ..., m\}$ be the eigenvalues of A_1 and A_2 , counted with multiplicity. Show that the eigenvalues of the matrix $A_1 \otimes A_2$ (constructed in Problem 3), counted with multiplicity, are given by $\{\lambda_i \mu_j : i = 1, ..., n, j = 1, ..., m\}$.

Problem 6. Consider three K-vector spaces U, V, W. Assume V is finite-dimensional. Show that $\operatorname{Hom}_{\mathbb{K}}(V, U) \otimes W \simeq \operatorname{Hom}_{\mathbb{K}}(V, U \otimes W)$ by writing an explicit isomorphism. (*Hint:* When $U = \mathbb{K}$, the statement is the Hom-tensor adjointness theorem)

Problem 7. Consider two finite-dimensional K-vector spaces V and W, each with two bases B_1, B'_1 and B_2, B'_2 , respectively. Describe the change of bases matrix for $V \otimes_{\mathbb{K}} W$ with respect to the bases $B_1 \times B_2$ and $B'_1 \times B'_2$ (ordered appropriately).

Problem 8. Consider \mathbb{K} -vector spaces U, V, W. Using the universal property of tensor products show that

(i) there exists a unique \mathbb{K} -linear isomorphism $\phi: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} W \otimes_{\mathbb{K}} V$ satisfying $\phi(v \otimes w) = w \otimes v$ for all $v \in V, w \in W$;

(ii) there exists a unique K-linear isomorphism $\beta : (U \otimes_{\mathbb{K}} V) \otimes_{\mathbb{K}} W \xrightarrow{\simeq} U \otimes_{\mathbb{K}} (V \otimes_{\mathbb{K}} W)$ satisfying $\beta((u \otimes v) \otimes w) = u \otimes (v \otimes w)$.

Problem 9. Consider two finite-dimensional K-vector spaces V and W, with dim V = n and dim W = m. Consider the following composition of isomorphisms:

 $\alpha: \operatorname{Hom}_{\mathbb{K}}(V^*, W) \xrightarrow{\simeq} V \otimes_{\mathbb{K}} W \xrightarrow{\phi} W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}(W^*, V)$

where the first and the last maps arise from Hom-tensor adjointness, and ϕ is the map defined in Problem 8 (i). Show that under the identifications $\operatorname{Mat}_{m \times n}(\mathbb{K}) \simeq \operatorname{Hom}_{\mathbb{K}}(V^*, W)$ and $\operatorname{Hom}_{\mathbb{K}}(W^*, V) \simeq \operatorname{Mat}_{n \times m}(\mathbb{K})$, the map α corresponds to taking the transpose of a matrix.

Problem 10. (Rank of tensors) Consider two K-vector spaces V and W. For any $u \in V \otimes_{\mathbb{K}} W$ we define the *rank* of u as the smallest non-negative integer r for which u admits an expression:

(1)
$$u = \sum_{i=1}^{r} v_i \otimes w_i \qquad v_i \in V, w_i \in W.$$

- (i) Assume that rank(u) = r and write u as in (1). Show that the sets $\{v_i : i = 1, ..., r\}$ and $\{w_i : i = 1, ..., r\}$ are linearly independent subsets of V and W, respectively.
- (ii) Conversely, if $u = \sum_{i=1}^{s} a_i \otimes b_i$ where the sets $\{a_i : i = 1, \ldots, s\} \subset V$ and $\{b_i : i = 1, \ldots, s\} \subset W$ are linearly independent, then $\operatorname{rank}(u) = s$.
- (iii) Assume V and W are finite-dimensional. Hom-tensor adjointness yields isomorphisms

$$\varphi_1: V \otimes_{\mathbb{K}} W \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}(V^*, W), \qquad \varphi_2: W \otimes_{\mathbb{K}} V \xrightarrow{\simeq} \operatorname{Hom}_{\mathbb{K}}(W^*, V).$$

Consider the isomorphism ϕ from Problem 8 item (i) and let $u_1 = \varphi_1(u)$, and $u_2 = (\varphi_2 \circ \phi)(u)$. Show that rank $(u) = \dim \operatorname{Im}(u_1) = \dim \operatorname{Im}(u_2)$.

Problem 11. Let $k \in \mathbb{Z}_{\geq 1}$ and $v_1, \ldots, v_k \in V$. Show that $v_1 \wedge \ldots \wedge v_k \in \bigwedge^k V$ is non-zero if, and only if, $\{v_1, \ldots, v_k\}$ is linearly independent.

Problem 12. Let $P \in \operatorname{End}_{\mathbb{K}}(V)$ satisfying $P^2 = P$ (i.e. P is a projection). Show that $V \simeq \ker(P) \oplus \operatorname{Im}(P)$.

Problem 13. Let S_n be the symmetric group of n letters and V be a K-vector space. Show that we can define a unique left action of S_n on $T^n(V)$ satisfying that $\sigma \cdot (v_1 \otimes \ldots \otimes v_n) = v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}$ for each $\sigma \in S_n$ and each $v_1, \ldots, v_n \in V$. For each $\sigma \in S_n$ we let $\overline{\sigma}: T^n(V) \to T^n(V)$ be the unique linear map thus obtained.

Problem 14. ($S^n(V)$ as a subspace of $T^n(V)$)

Assume char(\mathbb{K}) = 0 and consider $S: T^n(V) \to T^n(V)$ given by $S(\xi) = \frac{1}{n!} \sum_{\sigma \in S} \overline{\sigma}(\xi)$, where

 $\overline{\sigma}(\xi)$ is defined as in Problem 13.

(i) Show that $S^2 = S$ and, furthermore,

 $\ker(S) = \langle v_1 \otimes \ldots \otimes v_n - v_1 \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_i \otimes v_{i+2} \ldots \otimes v_n : 1 \le i \le n-1, v_1, \ldots, v_n \in V \rangle.$

(ii) Conclude that $\operatorname{Im}(S) \simeq S^n(V)$ as K-vector spaces.

Problem 15. $(\bigwedge^n(V) \text{ as a subspace of } T^n(V))$

Assume char(\mathbb{K}) = 0 and consider $A: T^n(V) \to T^n(V)$ given by $A(\xi) = \frac{1}{n!} \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \overline{\sigma}(\xi)$,

where $\overline{\sigma}(\xi)$ is defined as in Problem 13.

(i) Show that $A^2 = A$ and furthermore,

 $\ker(A) = \langle v_1 \otimes \ldots \otimes v_n + v_1 \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes v_i \otimes v_{i+2} \ldots \otimes v_n : 1 \le i \le n-1, v_1, \ldots, v_n \in V \rangle.$

(ii) Conclude that $\operatorname{Im}(A) \simeq \bigwedge^n(V)$ as \mathbb{K} -vector spaces.

Problem 16. Prove the following isomorphisms of \mathbb{K} -vector spaces for all $n \in \mathbb{Z}_{>0}$:

(i) $T^n(V \oplus W) \simeq \bigoplus_{\substack{k=0 \ i_1 \ge 0, i_2, \dots, i_k > 0 \\ i_1 + \dots + i_k = n}}^n (T^{i_1}(V) \otimes T^{i_2}(W) \otimes T^{i_3}(V) \otimes \dots),$ (i.e., alternate ten-

sor powers of V and W, allowing to start from V or W, where the sum of the powers equals n)

(ii)
$$S^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} S^{i}(V) \otimes S^{n-i}(W),$$

(iii) $\bigwedge^{n}(V \oplus W) \simeq \bigoplus_{i=0}^{n} \bigwedge^{i}(V) \otimes \bigwedge^{n-i}(W).$

Problem 17. Let $v_1, \ldots, v_r \in V$ be a collection of linearly independent vectors. Let $\omega \in \bigwedge^p(V)$. Show that ω can be written as $\omega = \sum_{i=1}^r v_i \wedge \psi_i$ for some $\psi_1, \ldots, \psi_r \in \bigwedge^{p-1}(V)$ if, and only if, $v_1 \wedge \ldots \wedge v_r \wedge \omega = 0 \in \bigwedge^{p+r}(V)$.

Problem 18. Show that the multiplication maps $S^k(V) \times S^{\ell}(V) \to S^{k+\ell}(V)$ and $\bigwedge^k(V) \times \bigwedge^{\ell}(V) \to \bigwedge^{k+\ell}(V)$ defined in Lecture 38 are well-defined and are obtained from the multiplication map $\phi: T^k(V) \times T^{\ell}(V) \to T^{k+\ell}(V)$ composed with the corresponding natural projections to the symmetric and exterior powers of V.

Problem 19. Assume char(\mathbb{K}) = 0 and consider the map $\varphi \colon S^k(V) \times S^\ell(V) \to S^{k+\ell}(V)$ defined on the indecomposable tensors via

$$\varphi(\xi,\eta) = \frac{1}{\binom{k+\ell}{k}} \sum_{\sigma \in G} \sigma(\xi \otimes \eta) \quad \text{for } G = S_{k+\ell}/(S_k \times S_\ell), \xi \in S^k(V), \eta \in S^\ell(V), \eta \in S^\ell(V$$

where we view $S_k \times S_\ell \subset S_{k+\ell}$ as permutations of $\{1, \ldots, k\}$ and $\{k+1, \ldots, k+\ell\}$.

- (i) Check that φ is bilinear, so it yields a unique linear map $\overline{\varphi} \colon S^k(V) \otimes S^\ell(V) \to S^{k+\ell}(V)$.
- (ii) Show that $\overline{\varphi}$ defines an associative multiplication map on $S^{\bullet}(V)$.
- (iii) Show that $\overline{\varphi}$ fits into the natural commutative diagram involving the multiplication map on $T^{\bullet}(V)$, the projection $T^{n}(V) \to S^{n}(V)$ and the inclusion $S^{n}(V) \hookrightarrow T^{n}(V)$

defined in Problem 14:

Problem 20. Prove that $V \otimes V \simeq S^2(V) \oplus \bigwedge^2(V)$ by writing the explicit isomorphisms.

Problem 21. Assume V is a vector space of dimension n (finite). Pick a basis $B = \{v_1, \ldots, v_n\}$ for V.

- (i) Show that $\psi_B \colon \bigwedge^n(V) \to \mathbb{K}$ given by $\psi_B(\alpha(v_1 \land \ldots \land v_n)) = \alpha$ is an isomorphism.
- (ii) If B' is another basis for V, and A is the change of bases matrix from B' to B, show that $\psi_B(\xi) = \det(A)\psi_{B'}(\xi)$ for all $\xi \in \bigwedge^n(V)$.

Problem 22. Assume char(\mathbb{K}) = 0. Consider a \mathbb{K} -linear map $f: V \to W$ and the associated maps $S^n(f): S^n(V) \to S^n(V)$ and $\bigwedge^n(f): \bigwedge^n(V) \to \bigwedge^n(V)$.

(i) Show that these constructions are compatible with compositions, i.e., if $f: V \to U$, and $g: U \to W$ are K-linear, then

$$S^{n}(g \circ f) = S^{n}(g) \circ S^{n}(f)$$
 and $\bigwedge^{n}(g \circ f) = \bigwedge^{n}(g) \circ \bigwedge^{n}(f).$

(ii) Let $n = \dim(V)$ and pick $f \in \operatorname{End}_{\mathbb{K}}(V)$. Show that the following diagram commutes

$$\bigwedge^{n}(V) \xrightarrow{\bigwedge^{n}(f)} \bigwedge^{n}(V)$$

$$\simeq \bigvee_{\substack{\downarrow \\ M \\ \longrightarrow \mathbb{K}}} \xrightarrow{\det(f)} \mathbb{K}$$

Here, the bottom map is multiplication by $det(f) \in \mathbb{K}$, and the vertical maps are any fixed isomorphism from Problem 21.

(iii) In particular, if V = U = W have dimension n and f and g correspond to two matrices $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, show that $\det(AB) = \det(A) \det(B)$.

Problem 23. Assume char(\mathbb{K}) = 0. Prove the row expansion formula for determinants of square matrices using det(f) = $\bigwedge^{n}(f)$: $\bigwedge^{n}(\mathbb{K}^{n}) \to \bigwedge^{n}(\mathbb{K}^{n})$ where $f \colon \mathbb{K}^{n} \to \mathbb{K}^{n}$ is multiplication by the corresponding matrix.

Problem 24. (Determinants vs. Permanents of singular matrices)

Assume char(\mathbb{K}) = 0 and consider the endomorphism $f: \mathbb{K}^2 \to \mathbb{K}^2$ defined by multiplication by the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. (i) Compute $\bigwedge^2(f): \bigwedge^2(\mathbb{K}^2) \to \bigwedge^2(\mathbb{K}^2)$.

(ii) Compute $S^2(f): S^2(\mathbb{K}^2) \to S^2(\mathbb{K}^2)$.

(iii) Compute $S^3(f): S^3(\mathbb{K}^2) \to S^3(\mathbb{K}^2)$.

Problem 25. Let $X \in GL_n(\mathbb{K})$. We say X admits a *Gaussian decomposition* if it can be written as a product

$$X = X^- X^0 X^+,$$

where X^0 is a diagonal matrix, X^+ is an upper triangular matrix (i.e., $X_{ij}^+ = 0$ for i > j) with ones along the diagonal, and X^- is an lower triangular matrix (i.e., $X_{ij}^- = 0$ for i < j) with ones along the diagonal.

- (i) Show that if X admits a Gaussian decomposition then it is unique. (*Hint:* Prove the uniqueness for diagonal matrices admitting a Gaussian decomposition.)
- (ii) Show that a matrix $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{K})$ admits a Gaussian decomposition if, and only if, $a \neq 0$. Compute explicit formulas for X^-, X^0 and X^+ .

Problem 26*. Consider $X \in GL_n(\mathbb{K})$. The goal of this exercise is to show that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.

- (i) Show that if X admits a Gaussian decomposition, then all principal minors $\Delta_{1,\ldots,i}^{1,\ldots,i}$ (for $i = 1, \ldots, n$) are non-zero.
- (ii) If X admits a Gaussian decomposition, show that $X_{11}^0 = X_{11}$ and $X_{ii}^0 = \Delta_{1,\dots,i}^{1,\dots,i-1} / \Delta_{1,\dots,i-1}^{1,\dots,i-1}$ for all $i = 2, \dots, n$.
- (iii) Furthermore, prove that $X_{ji}^- = \Delta_{1,\dots,i}^{1,\dots,i-1,j} / \Delta_{1,\dots,i}^{1,\dots,i}$ and $X_{ij}^+ = \Delta_{1,\dots,i-1,j}^{1,\dots,i} / \Delta_{1,\dots,i}^{1,\dots,i}$ for all $i \leq j$.
- (iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal minors are non-zero.