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In all problems below, we assume R is a commutative ring and K is a field.

Problem 1. Show that given two K-vector spaces V1 and V2, the tensor product V1 ⊗K V2
defined via universal property (see Lecture 36) is unique up to unique isomorphism. Conclude
from this that for any K-vector space V , we have

V ⊗K K ' K⊗K V ' V.

Problem 2. Consider three K-vector spaces V1, V2 and W . Show that:

(V1 ⊕ V2)⊗K W ' (V1 ⊗K W )⊕ (V2 ⊗K W ).

Problem 3. Consider two matrices X1 ∈ Matm1×n1(K) and X2 = Matm2×n2(K) representing
linear transformations f1 : V1 → W1 and f2 : V2 → W2 with dimVi = ni and dimWi = mi for
i = 1, 2. Write down the matrix representing f1 ⊗ f2 : (V1 ⊗K V2) → (W1 ⊗K W2) using the
matrices X1 and X2, as in Lecture 36.

Problem 4. Apply the construction from Problem 3 to the following matrices:

X1 =

(
0 −1
0 −1

)
and X2 =

 1 0 3
−1 1 0

2 0 1

 .

Problem 5. Consider two square matrices A1 and A2 of sizes n×n and m×m , respectively.
Let {λi : i = 1, . . . , n} and {µj : j = 1, . . . ,m} be the eigenvalues of A1 and A2, counted
with multiplicity. Show that the eigenvalues of the matrix A1⊗A2 (constructed in Problem
3), counted with multiplicity, are given by {λiµj : i = 1, . . . , n, j = 1, . . .m}.

Problem 6. Consider three K-vector spaces U, V,W . Assume V is finite-dimensional.
Show that HomK(V, U)⊗W ' HomK(V, U ⊗W ) by writing an explicit isomorphism. (Hint:
When U = K, the statement is the Hom-tensor adjointness theorem)

Problem 7. Consider two finite-dimensional K-vector spaces V and W , each with two bases
B1, B

′
1 and B2, B

′
2, respectively. Describe the change of bases matrix for V ⊗KW with respect

to the bases B1 ×B2 and B′1 ×B′2 (ordered appropriately).

Problem 8. Consider K-vector spaces U, V,W . Using the universal property of tensor
products show that

(i) there exists a unique K-linear isomorphism φ : V ⊗K W
' // W ⊗K V satisfying

φ(v ⊗ w) = w ⊗ v for all v ∈ V , w ∈ W ;
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(ii) there exists a unique K-linear isomorphism β : (U ⊗K V )⊗K W
' // U ⊗K (V ⊗K W )

satisfying β((u⊗ v)⊗ w) = u⊗ (v ⊗ w).

Problem 9. Consider two finite-dimensional K-vector spaces V and W , with dimV = n
and dimW = m. Consider the following composition of isomorphisms:

α : HomK(V ∗,W )
' // V ⊗K W

φ // W ⊗K V
' // HomK(W ∗, V )

where the first and the last maps arise from Hom-tensor adjointness, and φ is the map de-
fined in Problem 8 (i). Show that under the identifications Matm×n(K) ' HomK(V ∗,W ) and
HomK(W ∗, V ) ' Matn×m(K), the map α corresponds to taking the transpose of a matrix.

Problem 10. (Rank of tensors) Consider two K-vector spaces V and W . For any
u ∈ V ⊗K W we define the rank of u as the smallest non-negative integer r for which u
admits an expression:

(1) u =
r∑
i=1

vi ⊗ wi vi ∈ V,wi ∈ W.

(i) Assume that rank(u) = r and write u as in (1). Show that the sets {vi : i = 1, . . . , r}
and {wi : i = 1, . . . , r} are linearly independent subsets of V and W , respectively.

(ii) Conversely, if u =
∑s

i=1 ai ⊗ bi where the sets {ai : i = 1, . . . , s} ⊂ V and {bi : i =
1, . . . , s} ⊂ W are linearly independent, then rank(u) = s.

(iii) Assume V and W are finite-dimensional. Hom-tensor adjointness yields isomophisms

ϕ1 : V ⊗K W
' // HomK(V ∗,W ), ϕ2 : W ⊗K V

' // HomK(W ∗, V ).

Consider the isomorphism φ from Problem 8 item (i) and let u1 = ϕ1(u), and u2 =
(ϕ2 ◦ φ)(u). Show that rank(u) = dim Im(u1) = dim Im(u2).

Problem 11. Let k ∈ Z≥1 and v1, . . . , vk ∈ V . Show that v1 ∧ . . . ∧ vk ∈
∧k V is non-zero

if, and only if, {v1, . . . , vk} is linearly independent.

Problem 12. Let P ∈ EndK(V ) satisfying P 2 = P (i.e. P is a projection). Show that
V ' ker(P )⊕ Im(P ).

Problem 13. Let Sn be the symmetric group of n letters and V be a K-vector space. Show
that we can define a unique left action of Sn on T n(V ) satisfying that σ · (v1 ⊗ . . . ⊗ vn) =
vσ(1) ⊗ . . . ⊗ vσ(n) for each σ ∈ Sn and each v1, . . . , vn ∈ V . For each σ ∈ Sn we let
σ : T n(V )→ T n(V ) be the unique linear map thus obtained.

Problem 14. (Sn(V ) as a subspace of T n(V ))

Assume char(K) = 0 and consider S : T n(V )→ T n(V ) given by S(ξ) =
1

n!

∑
σ∈Sn

σ(ξ), where

σ(ξ) is defined as in Problem 13.

(i) Show that S2 = S and, furthermore,

ker(S) = 〈v1⊗ . . . vn−v1⊗ . . .⊗vi−1⊗vi+1⊗vi⊗vi+2 . . .⊗vn : 1 ≤ i ≤ n−1, v1, . . . , vn ∈ V 〉.
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(ii) Conclude that Im(S) ' Sn(V ) as K-vector spaces.

Problem 15. (
∧n(V ) as a subspace of T n(V ))

Assume char(K) = 0 and considerA : T n(V )→ T n(V ) given byA(ξ) =
1

n!

∑
σ∈Sn

sign(σ)σ(ξ),

where σ(ξ) is defined as in Problem 13.

(i) Show that A2 = A and furthermore,

ker(A) = 〈v1⊗ . . . vn+v1⊗ . . .⊗vi−1⊗vi+1⊗vi⊗vi+2 . . .⊗vn : 1 ≤ i ≤ n−1, v1, . . . , vn ∈ V 〉.

(ii) Conclude that Im(A) '
∧n(V ) as K-vector spaces.

Problem 16. Prove the following isomorphisms of K-vector spaces for all n ∈ Z>0:

(i) T n(V ⊕W ) '
n⊕
k=0

⊕
i1≥0, i2,...,ik>0
i1+...ik=n

(T i1(V )⊗ T i2(W )⊗ T i3(V )⊗ . . .), (i.e., alternate ten-

sor powers of V and W , allowing to start from V or W , where the sum of the powers
equals n)

(ii) Sn(V ⊕W ) '
n⊕
i=0

Si(V )⊗ Sn−i(W ),

(iii)
∧n

(V ⊕W ) '
n⊕
i=0

∧i
(V )⊗

∧n−i
(W ).

Problem 17. Let v1, . . . , vr ∈ V be a collection of linearly independent vectors. Let
ω ∈

∧p(V ). Show that ω can be written as ω =
∑r

i=1 vi ∧ ψi for some ψ1, . . . ψr ∈
∧p−1(V )

if, and only if, v1 ∧ . . . ∧ vr ∧ ω = 0 ∈
∧p+r(V ).

Problem 18. Show that the multiplication maps Sk(V )× S`(V )→ Sk+`(V ) and
∧k(V )×∧`(V ) →

∧k+`(V ) defined in Lecture 38 are well-defined and are obtained from the mul-
tiplication map φ : T k(V ) × T `(V ) → T k+`(V ) composed with the corresponding natural
projections to the symmetric and exterior powers of V .

Problem 19. Assume char(K) = 0 and consider the map ϕ : Sk(V ) × S`(V ) → Sk+`(V )
defined on the indecomposable tensors via

ϕ(ξ, η) =
1(
k+`
k

)∑
σ∈G

σ(ξ ⊗ η) for G = Sk+`/(Sk × S`), ξ ∈ Sk(V ), η ∈ S`(V ),

where we view Sk × S` ⊂ Sk+` as permutations of {1, . . . , k} and {k + 1, . . . , k + `}.
(i) Check that ϕ is bilinear, so it yields a unique linear map ϕ : Sk(V )⊗S`(V )→ Sk+`(V ).

(ii) Show that ϕ defines an associative multiplication map on S•(V ).

(iii) Show that ϕ fits into the natural commutative diagram involving the multiplication
map on T •(V ), the projection T n(V ) → Sn(V ) and the inclusion Sn(V ) ↪→ T n(V )
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defined in Problem 14:

Sk(V )⊗ S`(V )
� _

��

� _

��

ϕ // Sk+`(V )

T k(V )⊗ T `(V )
mult. // T k+`(V )

OO

Problem 20. Prove that V ⊗ V ' S2(V )⊕
∧2(V ) by writing the explicit isomorphisms.

Problem 21. Assume V is a vector space of dimension n (finite). Pick a basis B =
{v1, . . . , vn} for V .

(i) Show that ψB :
∧n(V )→ K given by ψB(α(v1 ∧ . . . ∧ vn)) = α is an isomorphism.

(ii) If B′ is another basis for V , and A is the change of bases matrix from B′ to B, show
that ψB(ξ) = det(A)ψB′(ξ) for all ξ ∈

∧n(V ).

Problem 22. Assume char(K) = 0. Consider a K-linear map f : V → W and the associated
maps Sn(f) : Sn(V )→ Sn(V ) and

∧n(f) :
∧n(V )→

∧n(V ).

(i) Show that these constructions are compatible with compositions, i.e., if f : V → U ,
and g : U → W are K-linear, then

Sn(g ◦ f) = Sn(g) ◦ Sn(f) and
∧n

(g ◦ f) =
∧n

(g) ◦
∧n

(f).

(ii) Let n = dim(V ) and pick f ∈ EndK(V ). Show that the following diagram commutes∧n(V )

'
��

∧n(f)
//
∧n(V )

'
��

K
det(f)

// K

.

Here, the bottom map is multiplication by det(f) ∈ K, and the vertical maps are any
fixed isomorphism from Problem 21.

(iii) In particular, if V = U = W have dimension n and f and g correspond to two ma-
trices A,B ∈ Matn×n(K), show that det(AB) = det(A) det(B).

Problem 23. Assume char(K) = 0. Prove the row expansion formula for determinants of
square matrices using det(f) =

∧n(f) :
∧n(Kn) →

∧n(Kn) where f : Kn → Kn is multipli-
cation by the corresponding matrix.

Problem 24. (Determinants vs. Permanents of singular matrices)
Assume char(K) = 0 and consider the endomorphism f : K2 → K2 defined by multiplica-

tion by the matrix A =

(
1 2
2 4

)
.

(i) Compute
∧2(f) :

∧2(K2)→
∧2(K2).

(ii) Compute S2(f) : S2(K2)→ S2(K2).
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(iii) Compute S3(f) : S3(K2)→ S3(K2).

Problem 25. Let X ∈ GLn(K). We say X admits a Gaussian decomposition if it can be
written as a product

X = X−X0X+,

where X0 is a diagonal matrix, X+ is an upper triangular matrix (i.e., X+
ij = 0 for i > j)

with ones along the diagonal, and X− is an lower triangular matrix (i.e., X−ij = 0 for i < j)
with ones along the diagonal.

(i) Show that if X admits a Gaussian decomposition then it is unique. (Hint: Prove the
uniqueness for diagonal matrices admitting a Gaussian decomposition.)

(ii) Show that a matrix X =

(
a b
c d

)
∈ GL2(K) admits a Gaussian decomposition if, and

only if, a 6= 0. Compute explicit formulas for X−, X0 and X+.

Problem 26*. Consider X ∈ GLn(K). The goal of this exercise is to show that X admits
a Gaussian decomposition if, and only if, all its principal minors are non-zero.

(i) Show that if X admits a Gaussian decomposition, then all principal minors ∆1,...,i
1,...,i

(for i = 1, . . . , n) are non-zero.

(ii) IfX admits a Gaussian decomposition, show thatX0
11 = X11 andX0

ii = ∆1,...,i
1,...,i/∆

1,...,i−1
1,...,i−1

for all i = 2, . . . , n.

(iii) Furthermore, prove that X−ji = ∆1,...,i−1,j
1,...,i /∆1,...,i

1,...,i and X+
ij = ∆1,...,i

1,...,i−1,j/∆
1,...,i
1,...,i for all

i ≤ j.

(iv) Conclude that X admits a Gaussian decomposition if, and only if, all its principal
minors are non-zero.


