Recall:
$$(G, \kappa, e)$$
 group - a $\kappa b \in G$ $b + 5 \in G$
(i) Assoc: $(a + b) \kappa c = a \kappa (b + c)$ $\forall a, b, c \in G$
(ii) Neutral: $a \kappa e = e \kappa a = a$ $\forall a \in G$ (unique!)
(iii) Turne: $\forall a \in G = B \in G$: $a + b = b + a = e$ (unique!)
(iii) Turne: $\forall a \in G = B \in G$: $a + b = b + a = e$ (unique!)
 $G, G' = g hs$ $\Psi: G \longrightarrow G' = g humomorphism
means $\Psi(a + b) = \Psi(a) \kappa \Psi(b)$ (mode $\Psi(e) = e'$
 $\Psi(\kappa') = \Psi(\kappa)$)
Nice aroups: those given as "symmetries of a structure"
Advantage: Associativity is automatic!
Structure": a finite set $X = \{1, 2, \dots, n\}$ for $n = 1 \times 1$
Symmetries" = bijectime $\nabla: X \longrightarrow X$
Group operation = composition of two maps
 $X \longrightarrow X \longrightarrow X$
 $G = K \nabla := G \circ \nabla = G \nabla$ (usually us short o)
Ex: $S_n = Permutations on n$ letters $j = a_{1} - g a_{1}$
The "words" in the alphabet ($e = u = y + y + y = a_{1}$
 $K = concationation ($+ cancellations$)
 $E_3: a_{12}^{-2} a_{1} a_{2} a_{1} \kappa a_{1}^{-1} a_{2} = a_{2}^{-2} a_{1} a_{2} a_{1}^{-2} a_{1} a_{2}$$$

122 31 Sub groups: G 3p Def A subset HCG is a subgroup of G if: $(i) e \in H$ (H<u>inherits</u> zp structure from G) (ii) $x, y \in H \implies x_{*}y \in H$ (iii) $x \in H \implies x^{-1} \in H$ Notation: H<G for subgroup. Obs: (ii) & (iii) can be written togetter as XYEH => XYEH Proposition A nonempty subset H of G is a subgroup it, and my it, for all x, y EH we have X*y-'EH. 3f/ (=>) If H is a subgroup and y = H, we have y 'e H as well Since H is closed under * & X, y-'EH, we conclude X*y-'EH (<) We must show properties (i), (ii) & (cici) (i) since $H \neq \phi$ we can pick an $x \in H$. Then take $y = x \in A$ conclude that $C = X * X^{-1} \in H$ (iii) Tick any yEH. Since CEH by (i) we conclude y=e*y-'EH So H is close under taking inverses, as we want to show. (ii) Bick any x, y EH. Since y EH, by liki) we have y'ett Therefore x, y'EH fras x+y = x * (y') EH by my hypothesis. We conclude that H is closed under the operation * § 2 Normal subgroups: Def: A subgroup H<G is called normal if ¥aEG, LEH we have a'ba EH (equivalenty aba'EH) Notation: H < G (Itriangleleft im LaTeX)

Obs: If G is abelian, only subspond to G is normal.
(Is the convent time? and see page 9)
G: Subspaces from gp homomorphisms? A: 400 (just and
Linuar Algebra)
Def. Given
$$P:G \longrightarrow G'$$
 gp homomorphism
ker (P):= } xEG : $P(x) = e'$ } = kernel of P
Im (P):= } $P(x) : xEG$ = Image of Y
Lemma: (i) Ker (P) < G a (2) Im (P) < G'
gf/ (i) (Laim1: Ker(P) < G
Need To check 3 properties defining subsponds. Alternatively, we
use the Proposition from page 2. This requires us to check 2 things:
• Ker $P \neq p$: It holds since $P(e) = e'$ may $e \in Ker P$.
(Lesture 1)
• We must show: $x, y \in Ker P \implies x * y' \in Ker P$.
Again, we use the fact that P is a group homomorphism.
 $P(x * y'') = P(x) * P(y'') = P(x) * P(y)' = e' * (e')' = e' * e'
Induct: $P(a^{-1}ba) = P(a)^{-1} P(b) P(a) = e' × be ker P$.
(Laim2: $b \in Ker(P), a \in G \implies a^{-1}ba \in Ker P$.
 $Maxin Q = e' = e'$
(Laim2: $b \in Ker(P), a \in G \implies a^{-1}ba \in Ker P$.
 $Maxin Q = e' = e'$
 $E = P(a)^{-1} P(b) P(a) = e' × be ker P$.
 $Tm P need wat be normal
 $Ex: G = {[a b] : a^{-1} c \in G f \to G^{-1} G^{-1} P(b) = (a^{-1}) \notin P(b)$
 $P(a) = (a^{-1} b) (a^{-1} b) (a^{-1} b) (a^{-1} b) (a^{-1} b) = (a^{-1} b) \notin P(b)$
 $P(a) = (a^{-1} b) (a^{-1}$$$

Obs: If G is abelian, then all its subgroups are normal The envence is not true: the quaternions will provide an example (see HWI)

$$4, 4' \in H_{M_{Gps}}(G, G') \longrightarrow 4 * 4': G \longrightarrow G'$$

 $(This is pointwise inducation)$
 $3 \mapsto 9_{(g)} * 9_{(g)}$
This operation defines a map $H_{M_{Gps}}(G,G') \times H_{M_{Gps}}(G,G') \longrightarrow H_{M}(G,G')$
• Associative because $*_{G'}$ is associative

• Inverses?:
$$\Upsilon'(g) = (\Upsilon(g))^{-1}$$
: $G \longrightarrow G'$ is well-defined
but it's not necessarily a group homosophism.
 $\Psi'(gh) = (\Upsilon(gh))^{-1} = (\Upsilon(g) \Upsilon(h))^{-1} = \Upsilon(h)' \Upsilon(g)$
 $= \Upsilon'(h) \Upsilon(g)$
So, to get $\Psi'(gh) = \Psi'(g) \Upsilon(h)$ we need $\Psi'(h) \not\in \Psi'(g)$ to

1215 commute! This will be true if G' is abelian.

$$\frac{P_{n}p}{3F} : \P * \P' \text{ is a group homomorphism if } G' \text{ is a betan} \\ \Im F / (\P * \P')_{(g*h)} = \P_{(g*h)} * \P'_{(g*h)} = (\P_{(g)} * \P_{(h)}) * (\P'_{(g)} * \P'_{(h)}) \\ = \P_{(g)} * (\P_{(h)} * \P'_{(g)}) * \P'_{(h)} \\ \text{Want} (\P * \P')_{(g*h)} = (\P_{(g)} * (\P_{(h)}) * (\P_{(h)}) * (\P_{(h)}) * (\P_{(h)}) \\ = \Psi_{(g)} * (\P'_{(g)} * \P_{(h)}) * \P'_{(h)}$$

$$\frac{(mclusin: (\Psi * \Psi')_{(S} * h) = (\Psi * \Psi')_{(S)} * (\Psi * \Psi')_{(h)} \text{ if, and mly if,}}{\Psi(h) * \Psi'(S) = \Psi'(S) * \Psi(h)}$$
This will hold if G' is abelian.

Inclusin: Our calculations say Hom (G,G') is a group under printuise valuation, but Hom (G,G') is not recessarily a subgroup for general G'. It's not even a numoid if G' is arbitrary. If G' is abelian, we can view Home (G,G') as a youp under printurise evaluation.

- End(G) = $H_{sm}(G, G)$ is a monord under empositions Aut (G) = is morphisms in $H_{sp}(G, G)$ is a group

<u>\$3 Aside: The quaternin group:</u>

Def: The quaternion group Q8 has group presentation $Q_8 = 3\bar{e}, i, j, k | \bar{e}^2 = e, i^2 = j^2 = k^2 = ijk = \bar{e} >$ Explicitly: Write e=1 & e=-1 Thm: $Q_8 = 3 \pm 1, \pm i, \pm j, \pm k$ How to read this from the presentation ? $-i = \overline{e}i = i\overline{e}$ ($\overline{e}si$ commute since $i^2 = \overline{e}$) • $(i)^{-1} = -i$ because $i^2 = -1$. • ij = k since $ijk = k^2 = jijkk^2 = k^2k^2$. my Cayley Table (multiplication table) is: Each entry ()xy = Xy 1 i j k -1 -i -j -ki j k -i-k1 -1-j k – j i –1 -i 1 -kj j **j -k** -1 i -j k -i 1 Obs: Qz is non-abelian k **k** j -i $^{-1}$ 1 -k-ji -1 -1 -i -j-ki 1 k ij = k ji = -kj -i -i 1 -ki j $^{-1}$ k -j-jk 1 -ij -k $^{-1}$ i $k \neq -k$ -k -k -j i 1 k j-i $^{-1}$

Obsz: Proper Subgroups of Q8 are 3±14, <i>, <j>, <k> (Idea: if you have two symbols, say z', j, then you generate all of Q8) <i> = 3±1, ±i}, etc. Obs3: These subgroups are normal

36/ ±1 commutes with all elements

$$g < i > g^{-1} = \langle g i g^{-1} \rangle$$

 $g = j \implies j i j^{-1} = j i (-j) = (-k) (-j) = -i \in (i)$
 $g = k \implies k i k^{-1} = k i (-k) = j (-k) = i \in (i)$
Others follow from this because -1 is central (commutes with
all other elements)
and $-g < i > (-g)^{-1} = g < i > g^{-1}$.
Conclusion: Q_{g} is Notabelian & all its subgroups are
 $normal$.

12回