Lecture 2: Subgroups, Normal subgps, Hm spaces
Recall, $(G, *, e)$ group $-a * b \in G$ $\forall a, b \in G$

- e mitral element
(i) Assur: $(a \times b) \leqslant c=a *(b \times c) \quad \forall a, b, c \in G$
(ii) Neutral: $a k e=e \times a=a \quad \forall a \in G \quad$ (unique!)
(iii) Inverse: $\forall a \in G \quad \exists b \in G: a * b=b * a=e$ (uniquer.)
G, G^{\prime} gps $\quad \varphi: G \longrightarrow G^{\prime}$ gp kunomizthism mans $\varphi(a * b)=\varphi(a) \notin \varphi(b)\left(\leadsto \varphi(e)=e^{\prime}\right.$ $\varphi\left(x^{-1}\right)=\varphi\left(x^{-1}\right)$
- Nice groups: those given as "symmetries of a structure" Advantage: Associativity is automatic!
"Stuecture": a finite set $x=\{1,2, \ldots, n\}$ for $n=|x|$
"Symmetries" $=$ bijections $\sigma: X \longrightarrow X$
Group operation $=$ composition of two maps

Ex: $S_{n}=$ permutations on n letters $; D_{n}=\underset{n-\text { gases }}{\substack{\text { semites }}}$
More examples: $\mathbb{F}_{n}=$ pee group on n letters $\left\{a_{11}, \ldots, a_{n}\right\}$ $\mathbb{F}_{n}=$ "words" in the alphabet $(e=$ "empty word")

* $=$ concaternatim $(+$ cancellations $)$

Eg. $\quad a_{2}^{-2} a_{1} a_{2} a_{1} * a_{1}^{-1} a_{2}=a_{2}^{-2} a_{1} a_{2} \alpha_{1} q_{1}^{-1} a_{2}=a_{2}^{-2} a_{1} a_{2}^{2}$

$$
\left(a_{1}^{-1} a_{2}\right)^{-1}=a_{2}^{-1} a_{1} \quad,\left(a_{2}^{-2} a_{1} a_{2} a_{1}\right)^{-1}=a_{1} a_{2}^{-1} a_{1}^{-1} a_{2}^{2}
$$

31 Sub groups:
Def A subset $H C G$ is a subgroup of G if:
(i) $e \in H$
(i) $x, y \in H \Rightarrow x * y \in H$
(iii) $x \in H \Rightarrow x^{-1} \in H$
(H inherits of p structure from G)

Notation: $H<G$ for subgroup.
Obs: (ii) \& (iii) can be written together as $x, y \in H \Rightarrow x y^{-1} \in H$
Pappsition A nonempty subset H of G is a subgroup if, and only if, fo all $x, y \in H$ we have $x * y^{-1} \in H$.
BF/ \Rightarrow If H is a subgroup and $y \in H$, we have $y^{-1} \in H$ as well Since H is closed under x \& $x, y^{-1} \in H$, we conclude $x * y^{-1} \in H$ (\leftarrow) We nest show properties (i), (ii) \& (cia)
(i) Since $H \neq \varnothing$ we can pick an $x \in H$. Then take $y=x$ \& conclude that $e=X * X^{-1} \in H$
(iii) Pick any $y \in H$. Since $e \in H$ by (i) we conclude $y^{-1}=e * y^{-1} \in H$ So H is close under taking inverses, as we want to show.
(ii) Sick any $x, y \in H$. Since $y \in H$, by (iii) we hate $y^{-1} \in H$ Therefore $x, y^{-1} \in H$ pros $x * y=x *\left(y^{-1}\right)^{-1} \in H$ by on hypothesis. We conclucle that H is closed under the geratim** § 2 Normal subgroups:
Def: A subgroup $H<G$ is called normal if $\forall a \in G, b \in H$ we hare $a^{-1} b a \in H$ (qquivalunty $a b a^{-1} \in H$)
Notation : $H \Delta G$ (Vtriangleleft in LaTeX)

Obs: If G is abelian, every subgroup H of G is normal. (Is the converse true? mo see page 9)
Q: Subgroups fum sp homomorphisms? A: yes (just as in Linear Algebra)
If: Given $\varphi: G \longrightarrow G^{\prime}$ sp homomorphism
$\operatorname{ker}(\varphi):=\left\{x \in G: \varphi(x)=e^{\prime}\right\}=\operatorname{Kennel}$ of φ
$\operatorname{Im}(\varphi):=\{\varphi(x): x \in G\}=I_{\text {mage }} \mid \varphi$
Lemma: (1) $\operatorname{Ker}(\varphi) \Delta G \quad \&$ (2) $^{2} \operatorname{Im}(\varphi)<G^{\prime}$
Pf/(1) Claim 1: $\operatorname{Ker}(\varphi)<G$
Need To check 3 properties defining subgroups. Alternatively, we use the Propsitim from page 2 . This requires us to check 2 things:

- $\operatorname{Ker} \varphi \neq \phi:$ It holds since $\varphi(e)=e^{\prime}$ say $e \in \operatorname{Ker} \varphi$. (Ledure 1)
- We must show : $x, y \in \operatorname{ker} \varphi \stackrel{?}{\Rightarrow} \quad x * y^{-1} \in \operatorname{ker} \varphi$.

Again, we use the fact that φ is a group homumrephism.

$$
\begin{array}{r}
\varphi\left(x * y^{-1}\right)=\varphi(x) * \varphi\left(y^{-1}\right)=\varphi(x) * \varphi(y)^{-1}=e^{\prime} *\left(e^{\prime}\right)^{-1}=e^{\prime} * e_{1} \\
x, y \in \operatorname{ker} \varphi .
\end{array}
$$

CRim 2: $b \in \operatorname{Ker}(\varphi), \quad a \in G \Rightarrow a^{-1} b a \in \operatorname{Ker} \varphi$
Indued: $\varphi\left(a^{-1} b a\right)={ }_{b}=\operatorname{Kec} \varphi(a)^{-1} \underbrace{\varphi(b)}_{=e^{\prime}} \varphi(a)=e^{\prime}$
(2) $\operatorname{Im}(\varphi)<G^{\prime}$ ms exercise
(1) $\operatorname{Im} \varphi$ need not be normal

Ex: $G=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in \mathbb{C}\right\}$

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
\varphi(G)
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)}_{\left(\begin{array}{ll}
2 & 1
\end{array}\right)}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right) \notin \varphi(G)
$$

Obs: If G is abclian, then all its subgroups are wound The converse is not thee: the quaternions will pride an example (see HWI)
33. How Spaces:

- $\operatorname{Hom}_{\text {Gps }}\left(G, G^{\prime}\right)=$ Set of group homouriphitus $G \rightarrow G^{\prime}$
- $\varphi \in \operatorname{Hom}\left(G, G^{\prime}\right)$ is an isomorphism if $\exists \varphi^{\prime} \in H_{m}\left(G^{\prime}, G\right)$ st $\quad \varphi_{0} \varphi^{\prime}=i d_{G^{\prime}}$

$$
\varphi_{0}^{\prime} \varphi=d d_{G}
$$

Def: $G \& G^{\prime}$ are is momarphic groups (wite $G \simeq G^{\prime}$) if $\exists \varphi \in \operatorname{Hom}\left(G, G^{\prime}\right)$ is orphism.

- We define the following operation in $\operatorname{Hom}_{\mathrm{Fs}}\left(G, G^{\prime}\right)$

$$
\begin{aligned}
\varphi, \varphi^{\prime} \in H_{m} G_{p s}\left(G, G^{\prime}\right) \leadsto \varphi_{*} \varphi^{\prime}: G & \longrightarrow G^{\prime} \\
\text { (This is printuise raluatim) } & \\
& \longmapsto \varphi_{(g)^{*}} \varphi_{(\rho)}^{\prime}
\end{aligned}
$$

This operation defines a map $H_{m m_{p s}}\left(G, G^{\prime}\right) \times H_{m_{G p s}}\left(G, G^{\prime}\right) \rightarrow H_{\text {Sits }}\left(G, G^{\prime}\right)$

- Associative because ${ }_{G^{\prime}}$ is asssciatere
- Neutral element $\varphi^{\prime}: G \longrightarrow G^{\prime} \quad \varphi\left(g^{\prime}\right)=e^{\prime}$
- Inverses?: $\varphi_{(g)}^{\prime \prime}=(\varphi(g))^{-1}: G \longrightarrow G^{\prime}$ is well-dyfined but it's not necessarily a group hamurerphism.

$$
\left.\begin{array}{rl}
\varphi^{\prime}(g h) & =(\varphi(g h))^{-1}=(\varphi(g) \varphi(h))^{-1}
\end{array}=\varphi_{(h)}^{-1} \varphi_{(g)}^{-1}\right)
$$

Comunte! This will be the if G^{\prime} is abclian
This is not the mly issiee we face:
Prop: $\varphi_{k} \varphi^{\prime}$ is a group hmanorphison if G^{\prime} is a betion

$$
\text { 3f/ } \begin{gathered}
\left(\varphi_{*} \varphi^{\prime}\right)_{(g * h)}=\varphi_{(g * h)} * \varphi_{(g * h)}^{\prime}=\left(\varphi_{(g)} * \varphi_{(h)}\right) *\left(\varphi_{(g)}^{\prime} * \varphi_{(h)}^{\prime}\right) \\
=\varphi_{(g)} *\left(\varphi_{(h)} * \varphi_{(g)}^{\prime}\right) * \varphi^{\prime}(h)
\end{gathered}
$$

Want $\left.\left(\varphi_{*} \varphi^{\prime}\right)_{(g * h)}\right)^{\left.-\left(\varphi_{*} \varphi^{\prime}\right)_{(g)}\right) *\left(\varphi_{*} \varphi^{\prime}\right)_{(h)}=\left(\varphi_{(g)} * \varphi^{\prime}(g)\right) *\left(\varphi_{(h)} * \varphi^{\prime} /(h)\right.}$

$$
=\varphi(g) \times\left(\varphi^{\prime}(g) * \varphi_{(h)}\right) * \varphi^{\prime}(h)
$$

Condusin: $\left(\varphi_{*} \varphi^{\prime}\right)_{(j * h)}=\left(\varphi_{*} \varphi^{\prime}\right)_{(g)} *\left(\varphi_{*} \varphi^{\prime} \lambda_{h)}\right.$ if, and mly if,

$$
\varphi(h) * \varphi^{\prime}(\xi)=\varphi_{(\rho)}^{\prime} * \varphi(h)
$$

This will hold if G^{\prime} is abdian.
Concusim: Om calculatius say $H_{\text {set }}\left(G, G^{\prime}\right)$ is a saep under printurise valuation, but $H_{m_{G p}}\left(G, G^{\prime}\right)$ is not necessarily a subpoup fr geveral G^{\prime}. It's not eren a munoid if G^{\prime} is a ubithary.

If G^{\prime} is abelian, we can riew $H_{m_{G p}}\left(G, G^{\prime}\right)$ as a poup unden printurise evaluation.
Q: What if $G^{\prime}=G$?

- End $(G)=H_{m_{G p}}(G, G)$ is a monoid under comprositions
- Aut $(G)=$ ismurphisus in $H_{m_{p}}(G, G)$ is a group
\& 3 Aside: The quaternion group:
Def: The quaternion group Q_{8} has group presentatim

$$
Q_{8}=\left\{\bar{e}, i, j, k \mid \bar{e}^{2}=e, i^{2}=j^{2}=k^{2}=i j k=\bar{e}>\right.
$$

Explicitly: Write $e=1$ \& $\bar{e}=-1 \quad$ Thun:

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

How to rad this from the presentation?

- $-i:=\bar{e} i=i \bar{e} \quad\left(\bar{e} \& i \quad\right.$ commute since $\left.i^{2}=\bar{e}\right)$
- $(i)^{-1}=-i$ because $i^{2}=-1$.
- $i j=k$ since $i j k=k^{2} \Rightarrow i j k k^{-1}=k^{2} k^{-1}$.
\leadsto Caylley Table (multiplication Table) is:

	1	i	j	k	-1	$-i$	$-j$	$-k$
1	1	i	j	k	-1	$-i$	$-j$	$-k$
i	i	-1	k	$-j$	$-i$	1	$-k$	j
j	j	$-k$	-1	i	$-j$	k	1	$-i$
k	k	j	$-i$	-1	$-k$	$-j$	i	1
-1	-1	$-i$	$-j$	$-k$	1	i	j	k
$-i$	$-i$	1	$-k$	j	i	-1	k	$-j$
$-j$	$-j$	k	1	$-i$	j	$-k$	-1	i
$-k$	$-k$	$-j$	i	1	k	j	$-i$	-1

C(Each entry () $x_{x y}=x y$

Obs: Q_{8} is nom-abclian

$$
\begin{aligned}
& i j=k \quad j i=-k \\
& \& \quad k \neq-k
\end{aligned}
$$

Obs: Proper Subgroups of Q_{8} are $\{ \pm 1\},\langle i\rangle,\langle j\rangle,\langle k\rangle$
(Idea: if you have two symbols, say i, j, then you generate all of Q_{8})

$$
\langle i\rangle=\{ \pm 1, \pm i\} \text {, the. }
$$

Obs 3: These subgroups are normal

BF/ ± 1 commutes with all elements

$$
\begin{gathered}
g\langle i\rangle g^{-1}=\left\langle g i g^{-1}\right\rangle \\
g=j \leadsto j i j^{-1}=j i(-j)=(-k)(-j)=-i \in\langle i\rangle \\
g=k \leadsto k i k^{-1}=k i(-k)=j(-k)=i \in\langle i\rangle
\end{gathered}
$$

Others follow far this because -1 is central (commuentes with

$$
\text { and }-g\langle i\rangle(-g)^{-1}=g\langle i\rangle g^{-1} \text {. }
$$ all other elements)

Conclusion: Q_{3} is not abelian \& all its subgroups are (mp example of a Hamiltonian op) normal.

