Lecture III: Quotients sugdic groups, first counting lima
La rt time : I Affined sub poops of a Sp G : sp stuecture inherited pan G $\left(\phi=H<G\right.$. if and sly if $\left.\left(x, y \in H \Rightarrow x * y^{-1} \in H\right)\right)$

- Defined normal subgroups: $H \triangleleft G \Leftrightarrow H<G \& a^{-1} b a \in H$ $\forall a \in G, b \in H$
- TODAY: -quotient groups, first countinglumma.
- Classification of cyclic groups
- generators of a group
- expment / order of a group

SI Quotient groups
GOAL: Given $H<G$ wait T_{0} build G / H
Consider the relation \sim on G given by $x \sim y$ if $x^{-1} y \in H$ (equiv: $x H=y H$)
(equiv: $x H=y H$)
as sits
Lemma: \sim is an equivalence relation.
PF/. Symmetry: Say $x \sim y \Rightarrow x^{-1} y \in H \Rightarrow\left(x^{-1} y\right)^{-1}=y^{-1} x \in H$
H salon $p \Rightarrow y \sim x$

- Reflexive: $\quad x \sim x \Leftrightarrow x^{-1} x=e \in H$
- Transitive $x \sim y \quad \& \quad y \sim z \quad \stackrel{?}{\Rightarrow} x \sim z$

$$
\Rightarrow x^{-1} z=\left(x^{-1} y\right)\left(y^{-1} z\right) \in H \cdot H \subseteq H
$$

$$
H_{\text {subgr }}^{b}
$$

Def: $G / H=$ set of equivalence classes in G with respect $t o \sim$.

$$
=\operatorname{left} \operatorname{cosets}(\text { modulo } H)=\{\times H \quad x \in G\}
$$

Similarly: $H \backslash G=$ right assets $($ modulo $H)$
= set of equip classes in G under

$$
x \sim^{\prime} y \Leftrightarrow y x^{-1} \in H \quad(\text { equir } H y=H x)
$$

Q: Do G / H and /r H H hare any algebraic structure?
A: Only when $H \triangleleft G$
Pesposition 1: Assume $H \triangleleft G$. Then, G / H has a group structure induced fum the one on G. Explicitly: $g_{1} H \cdot g_{2} H:=g_{1} g_{2} H$

$$
\left(e_{G / H}=1 \cdot H \&(g H)^{-1}=g^{-1} H\right) \text {. }
$$

$\begin{aligned} & \text { The natural projection } \pi: G \longrightarrow G / 7 \text { is a } g p \text { humsmuquism } \\ & \text { with } \operatorname{Ker}(\pi)=H\end{aligned}$
Sf/. Claim 1: Law of compsition is well-defined, ie

$$
g_{1} \sim g_{1}^{\prime} \& g_{2} \sim g_{2}^{\prime} \stackrel{?}{\Rightarrow} g_{1} g_{2} \sim g_{1}^{\prime} g_{2}^{\prime}
$$

$\begin{aligned} & \text { Indued, } g_{l} \sim g_{l}^{\prime} \Rightarrow g_{1}^{-1} g_{1}^{\prime} \in H \\ &(l=1,2)\end{aligned} \quad \begin{aligned} & g_{2}^{-1} g_{2} \in H\end{aligned} \quad$ wat to show: $\left(g_{1} g_{2}\right)^{-1} g_{1}^{\prime} g_{2}^{\prime} \in H$

$$
\left(g_{1} g_{2}\right)^{-1} g_{1}^{\prime} g_{2}^{\prime}=g_{2}^{-1}(g_{\epsilon H}^{-1} g_{1}^{\prime} g_{2}^{\prime}=\underbrace{g_{\epsilon}^{-1}\left(g_{\in H}^{-1} g_{1}^{\prime}\right) g_{2} \underbrace{g_{2}^{-1} g_{2}^{\prime}}_{\in H}}_{\in H \text { because } H \triangleleft G} \in H
$$

- Claim 2 : Law of compssitim M $6 / H$ is association
(This is inherited fum G)
.The assertions: $e H=e_{G / H} \&(g H)^{-1}=g^{-1} H$ arecciar
\&1 Cyclic groups:
Motivating example: $(\mathbb{Z},+)$ is abelian, so every $N<\mathbb{Z}$
Q: What does \mathbb{Z} / N book like?
Lemma, Fix $N<\mathbb{Z}$. Then, $\exists n \in \mathbb{Z} \geqslant 0$ sit $N=n \cdot \mathbb{Z}=\{0, \pm n, \pm 2 n, \ldots$.

Pf/. If $N=\{0\}$, then $n=0 \vee$

- Assume $N \neq\{0\}$ \& lit $n=$ smallest positive

Claim: $N=n \mathbb{Z}$ integer in N

Indeed, $n \mathbb{Z} \subseteq N$ because N is a subqoup.
Assume $N \nsubseteq n \mathbb{Z}$, then $n \neq 1 \& \exists_{0}^{\exists} m \in N \backslash n \mathbb{Z}$
Pick $k \in \mathbb{Z}_{>0}$ st $k<\frac{m}{n}<k+1 \Rightarrow k n<m<(k+1) n$ $\Rightarrow 0<\underbrace{m-\underbrace{\in N}_{\in N}}_{\in N}<n \quad$ contradicts minimality of n.
A: $\mathbb{Z} N=\mathbb{Z} / n \mathbb{Z}$ with low of compssitim " $\frac{\text { addling }}{\text { nodecton" }}$

- The above examples are cyclic groups.

Def A poop G is cyclic if $\exists g \in G$ set every element of G is of the from g^{m} for some $m \in \mathbb{Z}$, that is:

$$
g^{m}=\left\{\begin{array}{ll}
\frac{g \cdots \cdot g}{m \text { Times }} & \text { if } m>0 \\
\frac{g^{-1} \cdots \cdot g^{-1}}{(-m) \text { times }} & \text { if } m<0
\end{array} \quad \rightarrow\right. \text { also not unique }
$$

Name: $g=a$ generator for G (not unique!)
Eg $f r \mathbb{Z}:\{ \pm 1\}=\operatorname{set}$ of generators of \mathbb{Z}.
Exercise: Number of possible generators of $\mathbb{Z} / n \mathbb{Z}=\Phi$ Here, $\Phi_{(n)}=\{l \in\{1, \ldots, n-1\}: \operatorname{gcd}(l, n)=1\}$
§3. Subgroups generated by a set:
Euler's Phi function

Lemma: F ix H, H_{2} subgroups of G Then
(1) $H_{1} \cap H_{2}$ is a subgroup of G
(2) If $H_{1} \Delta G$ \& $H_{2} \sqsupset G$, then $H_{1} \cap H_{2} \triangleleft G$.

Proof: Easy \& works fr arbitrary intersectews.
\rightarrow Def: Given a set $X \subseteq G$, we define $\langle X>C G$ as the smallest subpoup of G containing the set X
Name: $\langle X\rangle$ subgoup-generated by X.
Obs: $\langle\phi\rangle=\{e\}$. (Finial subgp)
Similarly: $N\langle X\rangle=$ normal subgroup_gentated by X

$$
=\text { smallest normal subgp containing } X \text {. }
$$

Def: G is finitely -generated of \exists pinite $A \subset G$ with $\langle A\rangle=G$. For cyclic groups: $G=\langle 3 g\}\rangle$ for some $g \in G$

$$
=\left\{e, g, g^{2}, g^{3}, \cdots .\right\}
$$

$\leadsto 2$ options: $\left\{e,, g_{1}, g_{-2}^{2}, \ldots.\right\}$ is infinite (A)
$\left\{\xrightarrow{\prime g^{-1}, g^{-2}, \ldots \cdot}\right\}$ is finite
Option (A): G is isomorphic $t_{0} \mathbb{Z} \quad \mathbb{Z} \longrightarrow G \quad n \longmapsto g^{n}$.
Option (3) Pick $n=$ smallest positive integer st.

$$
g^{n} \in\left\{e, g, g^{2}, \ldots, g^{n-1}\right\} \quad(n>1 \text { if } G \neq\{e\})
$$

Maim: $g^{n}=e$
Otherwise, $g^{n}=g^{l}$ fr $0<l<n \Rightarrow g^{n-l}=e \in\left\{e, g, \ldots g^{n-l-1}\right\}$ Then, n was not minimal. Contr!
Then $G=\left\{e, g, g^{2}, \ldots, g^{n}\right\} \simeq \mathbb{Z} / n \mathbb{Z}$

$$
\left(g^{-1}=g^{n-1}\right) \quad g^{m} \longleftrightarrow \bar{m}:=m(n \mathbb{Z}) \text { is well def }
$$

Classification Thu: All cyclic groups ane is mirfhic to
\mathbb{Z} or $\mathbb{Z} / n \mathbb{Z}$ for some $n \in \mathbb{Z}_{>1}$. (finite cyclic)

These are examples of group pusentations:(generaters \& relus)

$$
\begin{aligned}
& \left.\mathbb{Z}=\langle g\rangle=\langle g| \text { only obvious unles }\left(g^{0}=e, g^{k} g^{l}=g^{k+l}\right)\right\rangle \\
& \mathbb{Z} / n \mathbb{Z}=\{0, T, \overline{2}, \ldots, \bar{n}\}=\left\langle g \mid g^{n}=e\right\rangle \uparrow \text { usually } \\
& =\left\langle g \mid g^{n}\right\rangle
\end{aligned}
$$

34. Mre in cosets \&Finst counting Lemma:

Def $|G|=$ \# elemeits in G is called the order of G.
Eg: $\left|S_{n}\right|=n!\quad|\mathbb{Z} / n \mathbb{Z}|=n$.

- If $H<G$, then G brakes into a disjoint umim of left cosets

$$
G=\bigsqcup_{\alpha \in A} g_{\alpha} H \quad A=\text { chrice of upresintaties of } G / H
$$

In particilar, A is in bijection with G / H. This gises us oue finst coanting lenma.
Lemma: Assume G is firite, Then $|G|=|H||G / H|$ Bf/ Foreachg $\begin{aligned} \varphi_{g}: H & \longrightarrow g H \text { is abijectim } . ~ \\ h & \longmapsto g h\end{aligned}$
Corollary: $|H|$ divides $|G|$
Remark: $|G / H|$ is usually denoted by $(G: H)=$ index of H in G It is passible por both $G \& H$ to be infimite a yet $(G: H)<\infty$.
Example: $\begin{aligned} G & =\mathbb{Z} \\ H & =5 \mathbb{Z}\end{aligned}$ infinite but $(G: H)=5<\infty$
Df: If $(G: H)<\infty$ we say H is a pimite index subproup.

