Lecture VI: Gwoup Actions on Sets
So fan: (1) Depined usefulterms frem Group Thory:

- Gnoup, subpone, subgoup fenerated by a subsect, rden \& expment
- Nrmal subpoup, urond sulgp
- Left / Right cests (G / H \& $H \backslash G$), Qustient proups
- Group himomophisms / Isomurfhisms. Kecrel \& Image I gptien.
- Free soup, Gemerators \& culatives; Exauples (Fre (A), S_{n}, D_{n})
(z) Main Results: 3 Isomorphison Thus, Classification of cyclic gps.

TODAY: qroupsacting on sets
81. Goup actions:

Def: Let G be any group and let X be a set. $A(l$ lut) action of $G m X$ is a set $\operatorname{map} G \times X \xrightarrow{\alpha} X$ satisfying Notarion GCX

$$
(g, x) \longmapsto \alpha(g, x)=g \cdot x
$$

(i) $e \cdot x=x \quad \forall x \in X$
(ii) $\left(g_{1} g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right) \quad \forall g_{1}, g_{2} \in G$ and $x \in X$.
[Fra right actim we uplace (ii) by $\frac{\text { (ii) }}{x \supset G}\left(x \cdot g_{1}\right) g_{2}=x \cdot\left(g_{1} g_{2}\right)$]
Observation: Il $G C X$, them each $g \in G$ depines a sect map:

It satisfies:

$$
\begin{aligned}
\tau(g)=\alpha(g,-): X & \longrightarrow X \\
x & \longmapsto g \cdot x
\end{aligned}
$$

(i) $\sigma_{(e)}=I d x$
(ii) $\left.\sigma\left(g_{1} g_{2}\right)(x)=\left(g_{1} g_{2}\right) x=g_{1} \cdot\left(g_{2} \cdot x\right)=\sigma\left(g_{1}\right)\left(\sigma_{\left(g_{2}\right)}(x)\right)=\left(\sigma_{\left(g_{1}\right)}\right)^{\sigma}\left(g_{2}\right)\right)(x)$
(iii) $\zeta\left(g_{1}^{-1}\right) \circ \sigma\left(g_{1}\right)=\sigma\left(g_{1}^{-1} g_{1}\right)=\sigma(e)=I d x$ by (i)

Conclusion : $G: G \longrightarrow$ Aut $(X):=\{f: X \longrightarrow x$ bijection $\}$ is a gphomomiphism. $=$ Symmatic sp on X

Example $\quad G=G L_{n}(\mathbb{R}) \circlearrowright X=\mathbb{R}^{n}$ by

$$
\begin{aligned}
& G \times X \xrightarrow{\alpha} X \quad \text { matrix multiplication. } \\
& (A, \underline{x}) \longmapsto
\end{aligned}
$$

Want to highlight that fr all $A \in G L_{n}(\mathbb{R})$ the resulting map $\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{n}$ is not just a set bijection, but it preserves the rector space structure $\left(A\left(\alpha v_{1}+\beta v_{2}\right)=\alpha A\left(v_{1}\right)+\beta A\left(v_{2}\right) \forall \alpha, \beta \in \mathbb{R}\right.$
Thus, $G L_{n}(\mathbb{R})=\operatorname{Aut}_{\mathbb{R}-v_{s} .}\left(\mathbb{R}^{n}\right)$ $\left.\forall v_{1}, v_{2} \in \mathbb{R}^{4}\right)$
si Orbits, Stabilizers \& Fixed Points Fix GCX.
24: The rabbit of an element $x \in X$ is the following subset of X

$$
G \cdot x:=\{g \cdot x \quad \mid x \in G\} \subseteq X
$$

If The stabilizer of an element $x \in X$ is the following subporepo G

$$
\operatorname{Stab}_{G}(x):=\{g \in G \quad \mid g \cdot x=x\} \leq G
$$

Obs: Stab ${ }_{G}$ need not be a normal subgroup (Example mage 5)
Def: The fixed print set of an element $g \in G$ is the following subset of X :

$$
X g:=\{x \in X \quad \mid \quad g \cdot x=x\} \leq X
$$

Example: $D_{n} \underset{6}{C} G L_{2}(\mathbb{R})=\operatorname{Aut}\left(\mathbb{R}^{2}\right)$

$$
\begin{aligned}
& s \longmapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { (reflection about } x \text {-axis) } \\
& \rho \longmapsto\left[\begin{array}{cc}
\cos (\theta) & -\operatorname{sen} \theta \\
\sin (\theta) & \cos \theta
\end{array}\right] \text { (notation of angle } \theta=\frac{2 \pi}{2} \text {) }
\end{aligned}
$$

- This defines a unique poop hamurephism becarese $G\left(s^{2}\right)=$ $G\left(\rho^{n}\right)=\sigma\left((\rho \rho)^{2}\right)=I d_{2}$.
- Since ζ is a group homomorphism, it defines an action $D_{n} \bigodot \mathbb{R}^{2}$.

Also on $X=\mathbb{R}^{2},\left\{\binom{0}{0}\right\}$. $\left[D_{n}\right.$ fixes $\binom{0}{0}$, so we an ignore it $]$

- Let us compete the rit of a pt $p \in X$.

In particular, $\left|\left\{p, \rho(p), \ldots, e^{n-1}(p)\right\}\right|=n$. (*)

$$
\begin{aligned}
D_{n} \cdot p & =\left\{p, P(p), e^{2}(p), \ldots, e^{n-1}(p), s(p), s e_{(p)}, \cdots, s e^{n-1}(p)\right\} \\
& \geq\left\{p, P(p), \ldots e^{n-1}(p)\right\}
\end{aligned}
$$

Claim: $\quad\left|D_{n} \cdot p\right|=2 n \quad \Longleftrightarrow \quad s(p) \notin\left\{p, \rho(p), \ldots, e^{n-1}(p)\right\}$
Pf/ \Rightarrow If $s(p)=\rho^{r}(p)$ for some $r=0, \ldots, n-1$, we hare a repeated element (\Leftarrow) If $\left|D_{n} \cdot p\right|<2 n$, then there is a repeated element x.
Now $x=s \rho^{k}(p)$ r $\rho^{j}(p)$ fo sue k, j
BUT $s \rho^{k}(p) \neq s \rho^{j}(p) \& \rho^{k}(p) \neq p^{j}(p)$ by (*). So the only option is $x=S \rho^{k}(P)=e^{j}(p)$ fo some k, j

BUT $s \rho^{k}=e^{-k} s=e^{n-k} s \quad \Rightarrow \quad e^{n-k} s(p)=e^{j}(p)$

$$
s(p)=e^{k+j}(p) \quad \text { Cunt r! }
$$

Now! $S(P)=e^{r}(P)$ for some $r=0, \ldots, n-1$ mans
Reflecting p about x-axis $=$ notation by $\frac{2 \pi r}{n}$.
In particular $s \rho^{r}(P)=P$
Write $P=R e^{\beta i}$ fr $0 \leq \beta<2 \pi$ Then:

$$
\begin{aligned}
R e^{\beta i}=R e^{-\left(\beta+\frac{2 \pi r}{n}\right) i} \Leftrightarrow & \beta \equiv-\beta-\frac{2 \pi r}{n}(2 \pi) \\
\beta & =\frac{-\pi r}{n}(\pi) .
\end{aligned}
$$

$$
\begin{array}{rr}
\left|D_{n} \cdot p\right|<2 n & \Leftrightarrow
\end{array} \quad \begin{aligned}
&=R e^{\beta i} \text { with } \beta=\frac{n-r}{n} \pi \pi \\
& \beta=\frac{2 n-r}{n} \pi \\
&(0 \leq r<n)
\end{aligned}
$$

In shost $P=R\left[\begin{array}{c}\cos \left(\frac{n-r \pi}{n} \pi\right) \\ \sin \left(\frac{n-r}{n} \pi\right)\end{array}\right]=R\left[\begin{array}{c}\sin \frac{r \pi}{n} \\ \cos \frac{r \pi}{n}\end{array}\right]$ i $P=R\left[\begin{array}{c}\cos \frac{\pi r}{n} \\ -\sin \frac{\pi r}{n}\end{array}\right]$
In this case, $\left|D_{n} \cdot p\right|=n$. Sima $\left\{p, \rho(p), \ldots, \rho^{n-1}(p)\right\}=D_{n} \cdot \rho$.
Q: $\operatorname{Stab}_{D_{n}}(p)=$?
A $\left\langle s \rho^{r}\right\rangle \subseteq \operatorname{Stab}_{D_{n}}(p)$. We'll se next that equality holds simce \mid Stab $_{D_{n}}(p) \left\lvert\,=\frac{\left|D_{n}\right|}{\left|D_{n} \cdot \rho\right|}=\frac{2 n}{n}=2\right.$.
Alternatise: $\rho j \notin \operatorname{Stab}_{D_{n}}(p)$ under $j=0$. by the order descuptim.

$$
s \rho^{j}(p)=p=s p^{r}(p) \quad \Leftrightarrow \quad p_{(p)}^{j}=\rho^{r}(p) \quad \Leftrightarrow j=r
$$ wotations mly tix $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Condusion: $\operatorname{Stab}_{B_{n}}(p)=\left\{s p^{r}, e\right\}=\left\langle s p^{r}\right\rangle$
Propsition: Let $G C X$
(1) Fon every $x \in X$ we have a (set) bijectim

$$
G / \operatorname{Stab}_{G}(x) \longrightarrow G \cdot x
$$

(2) Fr esery $\sigma \in G$ and $x \in X$, we hase an is mirphisin of poeeps

$$
\begin{aligned}
& \text { Cnj }\left.\sigma\right|_{\text {Stab }_{G}(x)} \text { Stab }_{G}(x) \longrightarrow \text { Stab }_{G}(\sigma \cdot x) \quad \text { (Comjugation by) } \\
& \sigma \sigma g \sigma^{-1}
\end{aligned}
$$

Pnoof: (1) Dipme f: $\alpha(-, x): G \longrightarrow G \cdot x$. Suyjectere by defiruition.

BuT $g \cdot x=h \cdot x \Leftrightarrow h^{-1} g \cdot x=x \Leftrightarrow h^{-1} g \in \operatorname{Stab}_{G}(x)$ LG 5 So this map factors through $G / S_{\operatorname{tab}}(x)=a \operatorname{set}$!

$$
\begin{aligned}
& G \xrightarrow[G / S \operatorname{Stab}_{G}^{(x)}]{G} \underset{\bar{F}}{\mathcal{O}} \bar{f}(\mathrm{gStab} G)=g \cdot x=f(g) .
\end{aligned}
$$

(2) $g \in \operatorname{Stab}_{G}(x) \Leftrightarrow g \cdot x=x \Leftrightarrow\left(\sigma g^{-1}\right)(\sigma x)=\sigma x$

$$
\Leftrightarrow \sigma_{g} \sigma^{-1} \in \operatorname{Stab}_{G}\left(\sigma_{x}\right)
$$

Since $C_{n j \sigma}$ is an autourftiisen of G, it induces an ismerfeism between $\operatorname{Stab}_{G}(x) \& \operatorname{Stab}_{G}(\sigma x)$.
\$3 Counting Lemmas
Def: $x v_{G} x^{\prime}$ in X ifs $\exists g \in G \quad g \cdot x=x^{\prime}$
Claim: This defines an equivalence relation.

$$
G^{X}:=X / \sim_{G} \quad \text { equir cases }=\text { obits }
$$

Easy Observation : $\quad X=\bigsqcup_{\alpha \in G X^{X}} G \cdot X_{\alpha} \Rightarrow|X|=\sum_{\alpha \in G X}\left|G \cdot x_{\alpha}\right|$
(Here $x_{\alpha} \in X$ is a choice of an element from the G-rit labeled by $\alpha \in \underset{G}{X}$)
$\underset{\substack{\text { Recall, } \\(\text { Prot })}}{ } G /$ Stab $_{G}(x) \xrightarrow{\text { bij }} G \cdot x \& \operatorname{Stab}_{G}(x) \xrightarrow{\text { conj }_{\sigma}} \operatorname{Stab}_{G}(\sigma \cdot x)$
Cowllays: (a) $|G|=|G \cdot x| \quad\left|\operatorname{Stab}_{G} x\right| \quad \forall x \in X$
(b) $|X|=\sum_{\alpha \in G^{x}}\left|G /\left|\operatorname{Stab}\left(x_{\alpha}\right)\right|\right.$

Next time: Burnside's Lemma or counting orbits.

