18 🛙 Lecture 8: Sylow Theorems Fix G fimite group acting masst X : GCX. Lounting Lemmas: (1) |G| = |G·x| | Stab (x) | XEX (2) $|X| = \sum_{\substack{x \in \mathcal{X} \\ x \in \mathcal{X}}} |G \cdot x_{\alpha}| = \sum_{\substack{x \in \mathcal{X} \\ x_{\alpha} \in \mathcal{X}}} \frac{|G|}{|S_{k, \alpha}|}$ Burnside Lemma (Frobenius, 1887) $|G^{X}| = \frac{1}{|G|} \sum_{g \in G} |X^{g}| = \frac{1}{|G|} \sum_{x \in X} |Stal_{G}(x)|$ <u>s 1 Applications to p-groups</u>, p= positive prime member $\underline{\mathfrak{D}}_{q}$: A group G is a p=qroup if $G=p^{k}$ for some $k\in\mathbb{Z}$. Eg : $G=\mathbb{Z}_{pk\mathbb{Z}}$ is a p-qroup. Lemma : Let G be a 1- youp acting n a finite set X. Then IXI = IXGI modp. Hue: X^G = $\bigcap_{g \in G} X^g = J \times \in X : g \cdot x = X \quad \forall g \in G \}_{constraints}$ $\frac{g_{x,y}}{g_{x,y}} : \frac{g_{y,y}}{g_{y,y}} : \frac{g_{y,y}}{g_{y,y}}$ => |X| = |X^G| mod (p). since 1< [G.xa] | IGI = pk <u>Scop</u>: Given any prime $p \in \mathbb{Z}_{\geq 2} \leq m \in \mathbb{Z}_{\geq 1}$, we have $\binom{p^m}{p^r} \equiv m \pmod{p}$ Broof: (1) Induct on r (2) Use apoup actions! Take $G = \mathbb{Z}_{p^2}$, $X = \frac{3}{2} \times 1, \dots, \times m$? $p^2 = \frac{3}{2} \times 1, \dots, \times m$? • E = set of all p^r element subsets of $G \times X$. ~ IEI = $\begin{pmatrix} P'm \\ Pr \end{pmatrix}$

• GC G X by
$$T(g,x) = (T,g,x)$$

So G C E by $T e_1, \dots, e_{qr} = f(e_1), T(e_2), \dots, T(e_{qr})$
(arrives for left attime on satisfied) $\in E \times$
• By Limma : $|IE| = \#(F rbits with weathy on element) (nod p)$
Let's over how many such orbits we have: 2^{-1} why of each member of the
orbit is first a GCG is transitive:
=> Oubits are $f(g,x_1) : gGG \}, f(g,x_2) : gGG \}, \dots f(g,x_m) : gGG \}$
=> m of them !
ble get $\binom{r'm}{m} = IEI \equiv m \mod(p)$ I
Est G be a group of order n .
Diffution: A subgroup $P < G$ of order p is called a Sylow p -subgroup G
Sylow Theorems:
(a) function: (A) Sylow p -subgroups exist.
(b) If $H < G$ is a p -yond, then there exists a Sylow p -subgroup $T < G$ with $H \subseteq P$.
(c) Let $n_p = nember of Sylow (-subgroups of G. There(i) $n_p \equiv 1$ mult)
with $Q = gPg^{-1}$$

We will prove these theseems using youp actives. An alternative proof will be discussed in HW3

Explored of Sylow There (A):
Let
$$\mathcal{E} = IY \subset G$$
 subset : $|Y| = p']_{PP} p^{-S} y_{PP}$ subgrapped stabilizer
 $G \subset \mathcal{E}$ induced by left multiplication action $G \subset G$, is:
Given $g \in G$, $g : Y = I_{S} : \dots : S_{pr} i \in \mathcal{E}$ and $g : T = I_{S} : y_{1} \dots : g : y_{pr} i \in \mathcal{E}$
(Laim: There exists $X \in \mathcal{E}$ where subst has condimality not divisible by p .
 $3F/B_{3}$ The counting Lemma :: $I \in I = \sum I_{G} : x_{x}I$
 $X \subset \mathcal{E}^{\mathbb{E}}$
By Lemma (qaq:1): $|\mathcal{E}| = \binom{p''_{pr}}{p} = m(mod p)$
But $m \neq 0$ und (p) so $p \neq I (G \cdot x_{x}I = \frac{1}{47} \text{ some } \alpha$. 0
 $P : Cole X from the Claim \mathcal{E} for H_X : $S = Stab_{G}(X) < G$
Thus $|G \cdot X| = \frac{1}{1H_XI} \neq 0$ und (p) . Thus, $p' \in [H_XI]$.
To finish, choose $x \in X$ and define $p: H_X \longrightarrow X$ (set map)
The map p is injective since $g : x_0 := h \times \infty$ in $G := g : h$.
 $\Rightarrow |H_X| \leq |X| := p^{C}$
Thus $|H_X| = p^{C}$ and hence H_X is a Sylow p-subgroup of $G I$
Let Q be a p -subgroup of G , so $|H| = p^{L}$ with $L \in \Gamma$.
Let Q be a $Sylow f - Subgroup of G (which exists by Thm (A))
We consider the action of H on the set $X := G/Q$: $h : gR : (hig)Q$.
By Lemma $(pq_{2}) : |X|^{H} = |X| \pmod{p}$ As $|X| = m \neq 0 \pmod{p}$.$$

We conclude g⁻¹hg
$$\in Q$$
 $\forall h \in H$ so $H \subseteq g \cdot g \cdot g^{-1}$
. Take $P = g \cdot g \cdot g^{-1}$. Since $|g \cdot Q \cdot g^{-1}| = |Q| = p^{r}$, then P is a
Sylaw g-surgeoup of $G = H \subseteq P$.
(B2) To prove B2 we take $H = P$ and Q and p -Sylaw surgeoup
By (B1) we can find $g \in G$ with $P \subseteq g \cdot g \cdot g^{-1}$
But since $|P| = p^{r} = |g \cdot Q \cdot g^{-1}|$, then $P = g \cdot Q \cdot g^{-1}$ so $Q \approx P$
as an anyogente to each other.
Obs: The proof of Sylaw Tam (A) is not constructive (in quartice), but the
proof of Sylaw Thm (B1) yields a potential algorithm. Start with an x
of riden p^{k} for sime $k > 0 = x$ at $H =$. Then, tag to add
Alemento to it (again, of riden a power of P) to extend H to a Sylaw
 P -subgroup of G .
By Thm (A), $S \neq P$. By definition, $|d| = n_{P}$.
By Thm (B), we know that $G \subset S$ by anyogetion is transitive
 $(x \cdot Q = x \cdot q \times 1)$.
(Insider $P \in S = x$ redict the attain to $P \subset S$.
 $(2 - Q = x \cdot q \times 1)$.

૮8 લિ

Sind of (laim: By construction
$$\Im \in \mathcal{F}$$
, so $\mathcal{J} \neq \mathcal{G}$. Fix $Q \in \mathcal{J}^{p}$, ie
 Q is a Sylow P-subgroup of G with $x Q x^{-1} = Q$ $\forall x \in P$.
Define $N_{Q} = \Im \in G$: $\Im Q \oplus^{-1} = Q \downarrow < G$ (normalizer of Q in G)
 $= \operatorname{Stab}_{G}(Q)$ under action by conjugation
Then $Q, P \subset \mathcal{N}_{Q}$ a $|\mathcal{N}_{Q}|||G| = p^{cm}$ so $P_{\mathcal{A}}Q$ on two
Sylow p -subgroups of \mathcal{N}_{Q} .
By $(B_{\mathcal{C}})$ $P_{\mathcal{A}}Q$ on conjugate in \mathcal{N}_{Q} so $\exists x \in \mathcal{N}_{Q}$ with
 $x Q x^{-1} = P$. But $x Q x^{-1} = Q$ since $x \in \mathcal{N}_{Q}$.
We conclude $P = Q$ \square
It remains to show that $n_{p} | m$. To do so, we consider $G \subset \mathcal{J}$
by enjugation (This action is transitione by $(B_{\mathcal{C}})$). Choose $P \in \mathcal{J} \neq$
Use Counting Lemma 1:
 $n_{p} = |\mathcal{J}| = |G \cdot P| = \frac{|G|}{|Stub_{G}(P)|} = \frac{|G|}{|\mathcal{N}_{p}|}$
Since $P < \mathcal{N}_{p} < G \Longrightarrow |\mathcal{N}_{p}| = p^{c}m'$ $|T \text{ since } m' | m$.
Then $n_{p} = \frac{m}{m'} = \Re$ so $n_{p} | m$.