Lecture 9: Sylow Thiorems II
Last time: Discussed Sylow Thus
Fix $p>0$ prime \& wite $n=p^{r} m$ with (m:p) $=1$.
Let G be a group of reder n.
D.f位位: A subpoup $P<G$ of rder P^{r} is called a Sylow p-subspof G

Sylow Thurems: (A) Sylow p-subgoups exist.
(B) If $H<G$ is a p-pout, then there existb a Sylow p-subpoup $P<G$ with $H \subseteq P$.
(B2) A ny woo Sylow P-subgroups $P, Q<G$ are conjugate to each othen (ie $\exists g \in G$ with $Q=g P^{-1}$)
(c) Let $n_{p}=$ number of Sylow 1 -sub groups of G. Then (i) $n_{p} \equiv 1$ mud (p)
(ii) np 1 m

Obs 1: (A) can be strengthen To arbitiany proens of P : (See HW3)
(A^{\prime}) There exists subgroups H of G with $|H|=P^{i}$ fo all $i=0, \ldots r$.
Obs 2: original proof of Sylow(A)went through permutations \& matrices / Ipp:
(sertw3)

$$
\begin{aligned}
& \text { Aut set }(G) \\
& \text { Step 1: } G \longrightarrow S_{n} \longrightarrow G L_{n}\left(\mathbb{F}_{p}\right) \\
& g \longmapsto \begin{array}{l}
\mathrm{Lg} \\
\sigma
\end{array} \longmapsto\left(P_{\sigma}\right)_{i j} \begin{cases}1 & \text { if } \sigma_{(i j}=j \\
0 & \text { lise }\end{cases}
\end{aligned}
$$

SEep 2: $G L_{n}\left(\mathbb{F}_{p}\right)$ has a Sylow p-group $=\left\{\left(\begin{array}{cc}1 & \lambda_{i j} \\ 0 & , 1\end{array}\right)\right.$: $\left.\lambda_{i j} \in \mathbb{F}_{p} 1 \leq i<j \leqslant n\right\}$ Here, $\left|G L_{n}\left(\pi_{p}\right)\right|=p^{\frac{n \mid n-1)}{2}} \pi$ where $(p: \Pi)=1$
(HW3: $n=2 \& p=5$).
\rightarrow Stup 3 (HEART) If $G<H \quad| ||G| \& H$ has a Sylow p-subsp, so does G. Obs 3: Can corent n_{p} for $G L_{n}\left(\mathbb{F}_{q}\right)$ or any fimite fild $\mathbb{T}_{q} p$ o chas $p\left(q=p^{k}\right)$ (seeHW3) $n_{p}=\prod_{k=1}^{n}\left(q^{k-1}+q^{k-2}+\cdots+1\right)=[n!]_{q}$ (q-factrial nember!). (HW3: Fr $n=2$ \& $q=p=5$, we hase $n_{5}=6=1(5+1)=[2!]_{5}$)
§1. Application 1: Cast tying Simple groups
Sylow Therms an often used for classification of finite groups In particular, they can help us find one nontrivial, proper normal subgp. (If so, $e \neq H \triangleleft G \leadsto s / H$ is group if smaller order)
Definition: A group G is simple if it has no nontrivial, proper, normal subgroup.
Lemma: Assume G has a unique Sylow p-subgroup $P, p \mid G \&$ G is not a $p-g p$. Then, $P \triangleleft G$
Proof: By Thu (B2), g $P g^{-1}$ is ald a Sylow p-subgroup $\forall g \in G$. Since $n_{p}=1$, we conclude $g P g^{-1}=P \quad \forall g \in G$, so $P \triangleleft G$.

Propsitinil: There are no simple groups of rider 28 Pf/ $\left.|G|=28=2^{2} 7 \quad \underset{\operatorname{Tmm}(C)}{ } \begin{array}{l}n_{7} \equiv 1 \text { mod } 7 \\ n_{7} 14\end{array}\right\} \Rightarrow \begin{aligned} n_{7}=1\end{aligned}$ By the Lemma, the Sylow 7-subgroup P of G is normal, proper a untrinial. So G is not simple.

Proposition 2: There ane no simple groups of order 224.
Pf/ $\left.|G|=224=2^{5} \cdot 7 \underset{\operatorname{Thm}(c)}{\Rightarrow} \begin{array}{l}n_{2} \equiv 1 \bmod 2 \\ n_{2} \mid 7\end{array}\right\} \Rightarrow n_{2}=1 \pi 7$
CASE 1: $n_{2}=1$ Then by the Lemma Sylow 2-sabpory $P \forall G$ But $e \neq P, P \neq G$ so G is not simple!
CASE 2: $x_{2}=7$ so $\left|S_{y} l_{2}(G)\right|=7$.
By Thu (B2) $G \circlearrowright \operatorname{Syl}_{2}(G)$ by unjugation.

Thus, we have a goop lumourphuson induced by conjugation

$$
\varphi: G \longrightarrow \text { Ant }_{\text {set }} S_{y P_{2}}(G)=S_{7}
$$

$$
\left(\varphi_{(\rho)}(Q)=\xi Q \rho^{-1}\right.
$$

sizes: 224

$$
7!=5040
$$

$$
\begin{equation*}
\left.\forall Q \in S_{y l_{2}}(G)\right) \tag{G}
\end{equation*}
$$

Claim 1: φ is not injectise
Pf/ If so $G \simeq \operatorname{Im} \varphi<S_{7}$ so $224 \mid 5040$ Coal
(lain 2: φ is not trivial (25×5040)

Sf/ $\operatorname{Ker} \varphi=G$ mans $G C S_{y} l_{2}(G)$ is a trivial actin, but wi know it's transitive \& $\left|S_{y} l_{2} G\right| \neq 1$. Cute!
Conclusion $\operatorname{Ker}(\varphi) \Delta G, \quad \operatorname{ker}(\varphi) \neq e, G$, so G is not simple.

- The last usual trick is lo orecouent when some $n_{p}>1$.

Pepopritim 3: There ane no simple groups of order 56.
Bf/ $\left.|G|=56=2^{3} \cdot 7 . \underset{\operatorname{Thm}(c)}{\Rightarrow} \begin{array}{l}\quad n_{7} \equiv 1 \bmod 7 \\ n_{7} \mid 8\end{array}\right\} \Rightarrow n_{7}=178$

- CASE 1: $n_{7}=1$ Then G is not simple ($P \in$ Syn,(G) works)
- CASE 2: $n_{7}=8$ Wite $S_{y} l_{7}(G)=\left\{P_{1}, \ldots, P_{8}\right\}$.
- Each Pi has 7 elements.
- $\left.P_{i} \cap P_{j}=3 e\right\} \quad$ if $i \neq j \quad$ (any $x \in P_{i} \cap P_{j}, x \neq e$ will ferrate
$\Rightarrow \bigcup_{i=1}^{8} P_{i}$ has $(7-1) 8=48$ elements of r oder 7 .
Then, $H=\left(G \backslash \bigcup_{i=1}^{8} P_{i}\right) \cup$ Res has $56-48=8$ elements.
- Claim : H is a Sylow z-subnoup of G, so $n_{2}=1 \& G$ is not simple If $Q \in S_{y l_{2}}(G)$, then $\left.Q \cap P_{i}=3 e\right\}$ (roust are copsime) So $Q \subseteq H$ but $|Q|=|H|=8$ so $Q=H$
Obs: One example featuring all ticks (in HW_{3}):
If $|G|=60=2^{2} .3 .5 \& G$ is simple, thin $n_{5}=6, n_{3}=10 \& n_{2}=5$.
§.2 Classification of poops of ryder p^{2} :
Lemma: If $H \neq$ ser is a p-group, then its under $Z(H)$ is untrivial Bf/ Consider $H C H$ by anjupation Then, $H^{H}=\left\{x \in H: h x h^{-1}=x \forall h \in H\right\}$

So $\left|H^{H}\right| \equiv|H| \equiv 0($ mod $p)$, Therefore, $p||Z(H)|$
Since $e \in Z(H),|z(H)| \neq \phi$ \& we conclude $|Z(H)|>1$.
Obs: $Z(H) \triangle H$ is a normal abelian subgroup.
We can prose that groups of order p^{2} are abelian \& we conclossity them:
Popsritim: If $|G|=p^{2}$, then G is a belian. Futturmore,

$$
G \simeq \mathbb{Z} / p^{2} \mathbb{Z}
$$

If/ By run Lemma $\left|Z_{(G)}\right|=p$ r p^{2}. In the latter case, $G=Z_{(G)}$ $\& G$ is abelian. In the framer case $\left|G / Z_{(G)}\right|=P$ so $G / Z_{(G)} \simeq \mathbb{Z} / P \mathbb{Z}$ is cyclic. But $H W \mid$ Problem 18 implies G is abelian so $|Z(G)| \neq P$.
T_{t} finish, we show the classification of G Cats!
CASE): $\exists g \in G$ of order p^{2}. Then $G=\langle g\rangle \simeq \mathbb{Z} / p^{2} q^{2}$
CASE 2: Every un-identity element hes oder p. We claim

$$
G \simeq \mathbb{Z} / p \mathbb{Z} \times \mathbb{Q} \mathbb{Z} \text { (coordinate wise multiplication) }
$$

Pick any $\sigma \in G \backslash e\}$ s any $\sigma \in G \backslash\langle\sigma\rangle$. Then:

$$
\langle\sigma\rangle \simeq \mathbb{Z} / p \mathbb{Z} \quad \& \quad\langle\sigma\rangle \simeq \mathbb{Z} / p \mathbb{Z}
$$

Check: (1) $\langle\sigma, \sigma\rangle=G$ because $p\langle |\langle\sigma, \sigma\rangle\left|\left||G|=p^{2}\right.\right.$
(2) $\langle\sigma\rangle,\langle\sigma\rangle \triangleleft G$ because G is abelian
(3) $\langle\sigma\rangle \cap\langle\zeta\rangle=3 e\} \quad$ (Otherwise, $\exists k \in\{1, \ldots, p-1\}$ with $\sigma^{k} \in\langle\sigma\rangle$ But $0\left(\zeta^{k}\right)=p$ because $(k: p)=1$, so $\left\langle\zeta^{k}\right\rangle=\langle\zeta\rangle \subseteq\langle\sigma\rangle$. Contradiction!)

this is sp hummisphism \& sarjectise by (1)
Obs 1: Pappritim fails for $|G|=p^{3} \quad\left(\right.$ eg $G=Q_{8}$ or $\left.D_{4}\right)$
Obs 2: (x) uses that G is abelian! But we can get by with less!
(1). We only need $\langle\sigma\rangle \&\langle\zeta\rangle$ to mutually commute.
(2) We need only one of them To be normal

These taro conditions will lead to semidinect products (next time!)

