Lecture 12: Short exact sequences, Compsition Series
Si Short exact sequences:
Recall A shist exact sropence (ses) is a serpence of the from

$$
\mathbb{1} \longrightarrow G_{1} \xrightarrow{\varphi} G_{2} \xrightarrow{\Psi} G_{3} \longrightarrow \mathbb{1}
$$

inolving proups a grong hmumurphisus with
(i) φ insectise
(ii) $\operatorname{ker} \psi=\operatorname{Im} \varphi$
(iii) ψ sumjectise.

Dffimitin: A ses is sflit if we have a sectin, that is, a gphom $s: G_{3} \longrightarrow G_{2}$ with. $\Psi_{0 s}=i d_{G_{3}} \quad(\rightarrow s$ in ingective!)
Defimition: A ses is tirial $\frac{f}{}$ wh hase a retractim, $\frac{\text { anat is, a ap ham }}{(a) \text { arection) }}$

-See HW4 fo examples. In particular.
Obs 1: Not ereny ses splits!
$E_{x}: \quad$ il \longrightarrow
Obs 2: tinial a split ses are different things!

Claim1: $S(-1)=(12)$ saticties signos $=i d 3+1\} \quad 1 \stackrel{s}{\longrightarrow}$ id $\xrightarrow{\sin } 1$ $(\Rightarrow$ ses speits) $\quad\{ \pm 1, .(-1) \rightarrow(12) \rightarrow-1$.
Clain2: $\nexists \mathrm{r}: \mathrm{S}_{3} \longrightarrow A_{3}$ ghhmen s.t. roi $=i d_{A_{3}}$ (\Rightarrow ses muthinad!) Why? set $\sigma=r\left((i j)(i \neq j) \quad o((i j))=2\right.$ but $o(\sigma) \quad| | A_{3} \left\lvert\,=\frac{\left|S_{3}\right|}{2}=3\right.$ so $o(\sigma)=1$.
But ereny punutation in S_{3} is a product of Thanspritives so S must be tivial $m S_{3}: I_{m} r=1 /<A_{3}$. Canti! since r is sujective

Lemma: A tivial ses alurays splits

$\Gamma: B \longrightarrow A \quad \quad \quad \operatorname{O} \varphi=i d_{A}$
Want to baild a gp hum $S: C \subset B$ with $\Psi_{0 S}=i_{C}$. we writh $\operatorname{ker} r \xrightarrow{\Psi_{\text {lerr }}} C \quad$ op hmmuredussen.

Claina 1: $\Psi_{\text {kear }}$ is injective.
3F) Pich $b \in \operatorname{kec} r$ with $\Psi(b)=e_{c}$. so $b \in \operatorname{ker} \Psi \stackrel{\downarrow}{=} \operatorname{Im} \varphi$ so $b=\varphi(a)$ fo $a \in A$.
Then $e_{A}=r(b)=\underbrace{r_{0} \varphi}_{1_{A}}(a)=a \quad \Rightarrow b=\varphi\left(e_{A}\right)=e_{B}$
Coim 2: $\Psi_{\text {lisers sugective }}^{-}$
3F/ Given $c \in C$ pick $b \in B$ with $\Psi(b)=c$. Thes choice is not uniquen, but if $\Psi\left(b_{0}\right)=c$ then $b^{\prime}=b \varphi_{(a)} f_{\Omega} a \in A$
Pich $b^{\prime}=b \operatorname{Por}_{\in A}^{\left(b^{-1}\right)}$. Nite: $b^{\prime} \in \operatorname{Ker} r$. becouse

$$
r\left(b^{\prime}\right)=r(b) \underbrace{r_{0} \varphi_{A}}_{=1_{A}} \circ r\left(b^{-1}\right)=r(b)^{r}\left(b^{-1}\right)=e_{B} \text {. Also } \Psi\left(b^{\prime}\right)=\Psi(b)
$$

Then $\exists \mathrm{s}: C \longrightarrow$ ker c © \longrightarrow sp humurfhism with $\Psi_{0 S}=1_{C} \quad \Rightarrow$ the ses splits.
s2. Dinct / Smidinut Puducts and s.e.s.:
Split \& Trinial ses will characterize G_{2} as $G_{1} \not \rtimes_{\alpha} G_{3} r G_{1} \times G_{3}$
Propositim 1: If the ses $\mathbb{1} \longrightarrow N \xrightarrow{\varphi} G \xrightarrow{\Psi} H \rightarrow \mathbb{1}$ is Thimal, then $G \approx N \times H$ (dinect product) when $N \stackrel{\varphi}{\hookrightarrow} G \& H \stackrel{S}{\hookrightarrow} G$

Brool: Asseme $\exists r: G \longrightarrow N$ retractim Then, by Lemema (papez), we have a sectim $H \subset S$

- The ses. for the Thiple $(N, N \times H, H)$ is Tisial.

Depine $\eta: G \longrightarrow N \times H$ iia $\eta(g)=(r(g), \Psi(g))$.

- η is ap ham sime both $r \& \psi$ are
- Clains): η is sujectere:
$36 /$ Pich $x \in N$ \& $h \in H$. Chose $g \in G$ with $\Psi(g)=h \quad(\exists$ becouse Ψ seni)
Take $\tilde{g}=g(\varphi \text { or }(g))^{-1} \varphi(x) \in G$

$$
\begin{aligned}
& \Rightarrow \Psi(\tilde{g})=\Psi(g) \psi\left(\varphi_{0 r}\left(g^{-1}\right)\right) \underbrace{\Psi_{0} \varphi_{(x)}}_{=e_{H}}=\psi_{(g)}^{\Psi_{0} \varphi_{=e_{H}}^{(\underbrace{\left(g^{-1}\right)}_{\in N})})}=\psi_{(g)}=h \\
& \begin{array}{l}
{ }^{r}(\xi)=r(g) \underbrace{r\left(\varphi_{0}\right.}_{i d_{N}}\left(g^{-1}\right)) \underbrace{r_{0} \varphi}_{r d_{N}}(x)=\underbrace{r(g)^{r}\left(g^{-1}\right)}_{=e_{G}} \cdot x^{=e_{H}}=x \in N
\end{array} \\
& \square
\end{aligned}
$$

- Claim z: η is injectise.

Pff If $\eta(g)=\left(e_{N}, e_{H}\right)$ then $\Psi(g)=e_{H}$, so $g \in \operatorname{Kec} \Psi=I_{m} \varphi$.
$\left.\begin{array}{l}\text { Then, } \exists x \in N \text { with } g=\varphi(x) \\ \Rightarrow e_{N}=r(g)=r_{0} \varphi(x)=x\end{array}\right\} \Rightarrow g=\varphi\left(e_{N}\right)=e_{G}$.
It is easy to check all squares comunte.
Peopsitim 2: If a ses $\mathbb{1} \rightarrow N \xrightarrow{\longrightarrow} G \xrightarrow{\Psi}, H \rightarrow 1$ splits, then $G \simeq N \rtimes H$ where $N \subset \varphi$ \& \& $H \subset \xrightarrow{s} G$

SF/ Know: $N \underset{\varphi}{\triangleleft} G$ \& $H \underset{s}{<} G$.
Clan 1: $\quad S(H) \cap \varphi(N)=\{e\}$
Pick $g \in S(H) \cap \varphi(N)$ then $g=s(h)=\varphi(x) \quad x \in N, h \in H$

$$
\left.\begin{array}{rl}
\Rightarrow \Psi(g) & =\Psi_{0} s(h)=h \\
& =\psi_{0} \varphi(x)=e_{H}
\end{array}\right\} \Rightarrow g=s\left(e_{H}\right)=e_{G}
$$

Coin 2: \quad NH $=\{\varphi(x) s(h) \quad x \in N, h \in H\}=G$
Pick $g \in G \Rightarrow \Psi_{(g)} \in H$
Peck $\tilde{g}=($ so $\Psi)(g)$. It satisfies $\Psi(g)=\Psi(\tilde{g})$, so $\tilde{g}^{-1} g \in \operatorname{Kec} \psi=\operatorname{Im} \varphi$ so $\tilde{\sigma}^{-1} g=\varphi(x)$ fo $\sin x \in N$.
Then: $g=\tilde{g} \varphi(x)=s_{0} \psi(g) \varphi(x)=\underbrace{s_{0} \psi_{(g)} \varphi_{(x)}\left(s_{0} \psi_{(g)}\right)^{-1}\left(s_{0} \psi\right)(s)}_{\in N} \underbrace{(s)}_{\in H}$
By definition, $G=\varphi_{(N)} \nsim S(H) \simeq N \nsim H$.
Example: $\left.11 \longrightarrow A_{n} \xrightarrow{i} S_{n} \xrightarrow{\text { sim }} 3 \pm 1\right\} \longrightarrow 1$ splits
(HWY)
$(12) \longleftrightarrow-1$
So $\quad S_{n}=A_{n} \rtimes \mathbb{Z} / 2 \mathbb{Z}$.
S3 Compsitim Series
Recall: A group S is called simple if ter \& S are the only usual subgroups of S
Examples: $A_{n} n \geqslant s$ are simple (next week)
$\mathbb{Z} / P_{Z} p>0$ prime are simple

$$
P S L_{n}=S L_{n} / Z\left(S L_{n}\right) \text { are simple }
$$

Def: A composition series of a group G is a finite sequence of subpoups of G

$$
\text { E: } \quad G=G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{k}=\{e\}
$$

such that $G_{j+1} \triangleleft G_{j}$ is normal fr all $j=0, \ldots, k-1$.
The successive quotients : $g r_{i}(G):=G_{i} G_{i+1} \quad 0 \leqslant i \leqslant k-1$.
(Other notation : $\operatorname{gr}_{i}^{\Sigma}(G)$ if Σ is not clear fum context.)
Def 2: A compssitim series Σ^{\prime} is said To repine Σ (r be fiver then Σ) if Σ is obtained fur Σ^{\prime} by omitting some terms:
Mon precisely: $\left.\Sigma^{\prime}: G=G_{0}^{\prime} \supseteq \cdots \geq G_{m}^{\prime}=3 e\right\}$

$$
\Sigma: G=G_{0} \geq \cdots \geq G_{n}=\{e\}
$$

Σ^{\prime} is freer than Σ if $n \leqslant m$ and there exists an rdor-presensing imjectire $\operatorname{map} \Phi: 30, \ldots, n\} \longrightarrow\{0, \ldots, m\}$ with $G_{j}=G_{\phi_{(j)}}^{\prime} \forall j$.
Ex, $\left.\Sigma_{1}: G=\mathbb{Z} / 6 \mathbb{Z} \geq \mathbb{Z} / 3 \mathbb{Z} \geq 3 e\right\}$ no refinement, only i coarsening

Remark: In general, a series obtained from a compritim series Σ^{\prime} by omitting some terms is NOT a comproitime series since fo $j>i \neq 1$, G_{j}^{\prime} is not in general a normal subgroup of G_{i}^{\prime}.
Ex 1:

$$
G=D_{4} \supseteq\left\langle e^{2}, s\right\rangle \geq\langle s\rangle \geq\{e\}
$$

$$
\binom{s e^{i}=e^{-i} s}{s^{-1}=s, e^{4}=1}
$$

$$
\begin{aligned}
& G_{1}=\left\langle\rho^{2}, s\right\rangle \triangleleft G \\
& G_{2}=\langle s\rangle \Delta\left\langle\rho^{2}, s\right\rangle \\
& G_{3}=3 e \varepsilon \triangleleft\langle s\rangle
\end{aligned}
$$

$$
\rho \rho^{2} \rho^{-1}=e^{2} \in G
$$

$$
e s \rho^{-1}=e^{2} s \in G_{1}
$$

$$
s \rho^{2} s^{-1}=\rho^{2} \in G_{1}
$$

$$
s s s^{-1}=s \in G_{1}
$$

$$
p^{2} s \rho^{-2}=\rho^{2} \rho^{2} s=e^{4} s=s \in G_{1}
$$

$$
s s^{-1}=s \in G_{1}
$$

$$
\begin{aligned}
& \Sigma_{2}: G=\mathbb{Z} / 6 \mathbb{Z} \geq \mathbb{Z} / 2 \mathbb{Z} \geq\{e\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\Sigma_{0}: \mathbb{Z} / 62 \geq 3 e \varepsilon, \Sigma_{1} \text { defines } \Sigma \text { ria } \phi: 30,1\right\} \rightarrow 3012\right\} \phi(0)=0, \phi_{(1)}=2
\end{aligned}
$$

$$
\begin{aligned}
& n_{0}\left(D_{4}\right)=\frac{\langle p, s\rangle}{\left\langle p^{2}, s\right\rangle} \cong \frac{p p\rangle}{\left\langle p^{2}\right\rangle} \simeq \mathbb{Z} / 2 \mathbb{Z} \\
& n_{1}\left(D_{4}\right)=\frac{\left\langle p^{2}, s\right\rangle}{\langle s\rangle} \cong\left\langle p^{2}\right\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \\
& n_{2} \cdot\left(D_{4}\right)=\frac{\langle s\rangle}{\langle e\rangle} \simeq \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

We canst omit $\left\langle p^{2} s\right\rangle$ and hare a comporitim series because $\langle s\rangle \phi D_{\varphi}$.

- We can mit $\langle s\rangle$ and get a comp series

$$
\begin{aligned}
& \Sigma_{2}: D_{4} \geq\left\langle\rho_{1}^{2} s\right\rangle \geq\{e\} \\
& \rho_{0}^{\Sigma_{2}}\left(D_{4}\right) \cong \nVdash / 2 \pi, \gamma_{1}^{\Sigma_{2}}\left(D_{4}\right)=\left\langle\rho^{2}, s\right\rangle=D_{2} .
\end{aligned}
$$

$\xi 4$ Schrier's Theorem:
We have a notion of equivalence of compsitim curies
Fix $\begin{array}{rl}\Sigma_{1}: G & =G_{0} \supseteq \ldots \supseteq G_{m}=\{e\} \\ \Sigma_{2}: H & H H_{0} \supseteq \ldots \geq H_{n}=\{e\}\end{array}$ too compssitim series
Def: We say $\Sigma_{1} \& \Sigma_{2}$ are equivalent of
(i) $m=n$
(ii) $\left.\exists \sigma \in S_{n}=\operatorname{Aut} t_{\text {st }}(30, \ldots, n-1\}\right)$ such that $g_{i}^{\Sigma_{1}}(G)=q_{\sigma_{(i)}}^{\Sigma_{2}}(H) . \underline{\forall_{i}}$

Ex: $G=\mathbb{Z} / 4 \mathbb{Z} \geq \mathbb{Z} / 2 \mathbb{Z} \supseteq 3 e\}$ are equinalut ($\sigma=$ id)

$$
H=\mathbb{Z} / 2 \mathbb{4} \times \mathbb{Z} \geq \mathbb{Z} / 2 \mathbb{Z} \geq 3 e\}
$$

Thurem (Schier) Let $\Sigma_{1} \& \Sigma_{2}$ be two composition spies of a group G.
Then, there exist ampsitim shies $\Sigma_{1}^{\prime} \& \Sigma_{2}^{\prime}$ finer than $\Sigma_{1} \& \Sigma_{2}$, uspecterely such that Σ_{1}^{\prime} a Σ_{2}^{\prime} are equivalent.
[Intepputatim: any two compsrition series hase a "comm refinement", up to equivalence]

- Obs ! Finest $(=$ simph gadid pieces $)+$ no repetitions ms Jodoun-Hïlder skies (TomorRow)

