Lecture 13: Zassen hans Lemma, Jrdan-Hïlder Series
Last time : Discussed compsitim spies

- A compsitim series of a group $G$ is a finite sequence of subgroups of $G$

$$
\sum: \quad G=G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{k}=\{e\}
$$

such that $G_{j+1} \triangleleft G_{j}$ is normal fr all $j=0, \ldots, k-1$.

- Graded pieces: $g r_{i}(G):=G_{i} G_{i+1} \quad 0 \leq i \leq k-1$.
- Represent: add terms to the compritir series while remaining me
- Equivalence: Dance number of terms
-     - Faded pieces, counted with multiplicity (up To permutation)

TODAY: "Proof if Shier's Thurum
. Discuss maximally repined comp.seves = Jordan Hölder series.
§I Schier's Thous\& Zassenhous Lemma.
Thurem (Schrier) Any two composition series of a group have a "cum refinement", up to equivalence.
Ex: $\quad G=\mathbb{\psi} / 6 \mathbb{Z}$

$$
\begin{aligned}
& \left.\Sigma_{1}=\Sigma_{1}^{\prime}: \mathbb{Z} / 6 \mathbb{Z} \geq \mathbb{Z} / 3 \mathbb{Z} \geq 3 e\right\} \\
& \left.\Sigma_{2}=\Sigma_{2}^{\prime}: \mathbb{Z} / 6 \mathbb{Z} \geq \mathbb{Z} / 2 \mathbb{Z} \geq 3 e\right\}
\end{aligned}
$$

jaded pieces: $\mathbb{Z} / 2 \mathbb{Z} \& \mathbb{Z} / 3 \mathbb{Z} \quad \Sigma_{1} \& \Sigma_{2}$ are eprinaluent via

Proof: Write $\Sigma_{1}: G=H_{0} \geq \ldots \geq H_{n}=\{e\}$

$$
\Sigma_{2}: G=K_{0} \geq \cdots \geq K_{p}=\{e\}
$$

Idea :(1) Fr each $i=0, \ldots, n-1$, use $\Sigma_{2}$ to insect $(p-1)$ many groups $\left\{H_{i j}^{\prime}\right\}_{j=1}^{p-1}$ in between $H_{i}$ \& $H_{i+1} \leadsto m$ get $\Sigma_{1}^{\prime}$ finer than $\Sigma_{1}$
(2) Similarly, use $\Sigma_{1}$ to insert ( $n-1$ ) many subgroup $\left\{K_{j, i}^{\prime}\right\}_{i=1}^{n-1}$ in between $K_{i} \& K_{i+1}$. $\leadsto$ get $\Sigma_{2}^{\prime}$ firer than $\Sigma_{2}$.
(3) Show $\Sigma_{1}^{\prime}$ \& $\Sigma_{2}^{\prime}$ are efenivalunt.

Define:
$\substack{i=0, \cdots, n \\ j=0, \cdots, 1}$
It is clear that: $H_{i, j}^{\prime}:=H_{i+1}\left(H_{i} \cap K_{j}\right) \& H_{i}, H_{i p}^{\prime}=H_{i+1}^{\prime} ; K_{j, 0}^{\prime}=K_{j, 1}\left(H_{i} \cap K_{j}\right)$
$\underline{K_{j, n}}=K_{j+1}$.

- $H_{i, j+1}^{\prime}<H_{i, j}^{\prime} ; \quad K_{j, i+1}^{\prime}<K_{j, i}^{\prime} \quad \forall i, j$ are subpraps by $3^{\text {rd }}$ Iso theorem ( $\left.H_{i} \cap K_{j}<H_{i}, H_{i+1} \nabla H_{i} \Rightarrow H_{i, j}^{\prime}<H_{i}\right)$ \& $H_{i, j+1}^{\prime} \subseteq H_{i, j}^{\prime}$ )
We need to check these subpoups are normal!
U aim:
(i) $H_{i, j+1}^{\prime} \triangleleft H_{i, j}^{\prime} \quad, K_{j, i+1}^{\prime} \triangleleft K_{j, i}^{\prime}$
(ii) $H_{i, j}^{\prime} / H_{i, j+1}^{\prime} \simeq K_{j, i}^{\prime} / K_{j, i+1}^{\prime}$

To simplify notatim, wite $H=H_{i} \triangleright H^{\prime}=H_{i+1}$

$$
K=K_{j} \triangleright K^{\prime}=K_{j+1}
$$

The claims will follow using Zassenhaus' Lemma
Lemma (Zassenhaus). Fix a joup $G, H, K$ Two sub coups of $G$ \& $H^{\prime} \Delta H, K^{\prime} \Delta K$. Then:
(i) $H^{\prime} \cdot\left(H \cap K^{\prime}\right) \triangleleft H^{\prime},(H \cap K)$

$$
K^{\prime} \cdot\left(H^{\prime} \cap K\right) \triangleleft K^{\prime} \cdot(H \cap K)
$$

(ii) $\frac{H^{\prime} \cdot(H \cap K)}{H^{\prime} \cdot\left(H \cap K^{\prime}\right)} \simeq \frac{K^{\prime} \cdot(H \cap K)}{K^{\prime} \cdot\left(H^{\prime} \cap K\right)}$

Pool: The next picture outlines the prof:


STEP $1\left(H^{\prime} \cap K\right) \cdot\left(K^{\prime} \cap H\right) \triangleleft \quad H \cap K$

$\left(H^{\prime} \cap K\right)\left(K^{\prime} \cap H\right)<H \cap K \quad$ lase $H^{\prime} \cap K \triangleleft H \cap K, K^{\prime} \cap H<H \cap K$.
But $\left.\rho\left(H^{\prime} \cap K\right) K^{\prime} \cap H S^{-1}=f H^{\prime} \cap K\right) s^{-1} g\left(K^{\prime} \cap H\right) s^{-1} \subseteq\left(H^{\prime} \cap K\right)\left(K^{\prime} \cap H\right)$ fo $g \in$ th so $\left(H^{\prime} \cap K\right)\left(K^{\prime} \cap H\right) \triangle H \cap K$.
STEP 2: $H^{\prime}\left(H \cap K^{\prime}\right) \triangleleft H^{\prime}(H \cap K)$
This follows from a muse general statement:
Lemma. If $\mathcal{G}$ is a group, $G_{1}<\xi, N \triangleleft \xi+G_{2} \triangleleft G_{1}$, them $N \cdot G_{2} \triangleleft N \cdot G_{1}$
IF/ $G_{2} \cdot N=N \cdot G_{2}<\mathscr{G}_{\&} \& G_{1} N=N G_{1}<\mathscr{G}$ by $3^{\text {cd }}$ Iso morphion Thu .
Then $\left.x=\left(g_{1}, n n^{\prime} S_{2}\left(g_{1} n\right)^{-1}=g_{1} n n^{\prime} g_{2} n^{-1} g_{1}^{-1}=\left(g_{1} n g_{1}\right) \mid g_{1} n^{\prime} \in g_{1}^{-1}\right)\left(g_{1} g_{2} g_{2} g_{1}^{-1}\right) g_{1}, u^{-1} g^{-1}\right)$

$$
\Rightarrow x \in N N G_{2} N=N G_{2} N=N N G_{2}=N G_{2} \quad \begin{aligned}
& \forall g_{1} \in G, n, n^{\prime} \in N \quad g_{2} \in G_{2} .
\end{aligned}
$$

(*) Al teunatise parol of the Lemma:
Let $\pi: \xi \longrightarrow \xi / \mathrm{N}$ be the natural porogetim $\& G_{1}=\pi\left(G_{1}\right)$ Restrict $\pi$ to $G_{1}$ to get $\pi: G_{1} \longrightarrow \overline{G_{1}}$, hence $\bar{G}_{2}:=\pi\left(G_{2}\right)$ is a normal subgroup of $G_{1}$ (because $\pi$ is rengectire).
Now, consider the hmumioplism defined by:

$$
\begin{array}{r}
G_{1} \cdot N \longrightarrow \xi \longrightarrow \xi / N \\
\alpha: G, N \longrightarrow \frac{\xi}{G_{1}}
\end{array}
$$

Then $\alpha^{-1}\left(\bar{G}_{2}\right)=G_{2} \cdot N$ is the insert image of a unusual subpouep, hence normal.
Them STEP 2 follows by taking $\mathcal{G}=H, N=H^{\prime}, G_{1}=H \cap K, G_{2}=H \cap K$.

STEP 3: Use the $3^{\text {nd }}$ Ismurphism Theorem:

$$
\frac{H^{\prime}(H \cap K)}{H^{\prime}\left(H \cap K^{\prime}\right)} \simeq \frac{H \cap K}{(H \cap K) \cap\left(H^{\prime} \cdot\left(H \cap K^{\prime}\right)\right)} \quad\left\{\begin{array}{l}
N=H^{\prime} \cdot\left(H \cap K^{\prime}\right) \triangleleft H \\
\tilde{H}=H \cap K
\end{array}\right.
$$

Claim: $(H \cap K) \cap\left(H^{\prime} \cdot\left(H \cap K^{\prime}\right)\right)=\left(H^{\prime} \cap K\right) \cdot\left(K^{\prime} \cap H\right)$
PF/ $\left(H^{\prime} \cap K\right)\left(K^{\prime} \cap H\right) \subset(H \cap K) \cap\left(H^{\prime} \cdot\left(H \cap K^{\prime}\right)\right)$ is clear
Conescely, let $x=a \cdot b \in H^{\prime}\left(H \cap K^{\prime}\right) \cap(H \cap K)$ with $a \in H^{\prime}, b \in H \cap K^{\prime}$

$$
\begin{aligned}
& \Rightarrow a=x b^{-1} \in(H \cap K) \cdot(H \cap K) \subseteq H \cap K \\
& \Rightarrow a \in H^{\prime} \cap(H \cap K)=H^{\prime} \cap K .
\end{aligned}
$$

Thus, $x=a b \in\left(H^{\prime} \cap K\right)\left(H \cap K^{\prime}\right)$.
Swapping the roles of $H \& K$, $H^{\prime} \& K^{\prime}$, combined with the (lain we get

$$
\frac{K^{\prime}(H \cap K)}{K^{\prime}\left(H \cap K^{\prime}\right)} \simeq \frac{H \cap K}{\left(H \cap K^{\prime}\right)\left(K \cap H^{\prime}\right)} \simeq \frac{H^{\prime}(H \cap K)}{H^{\prime}\left(H \cap K^{\prime}\right)}
$$

\$2 Jordan - Hälder Series
Definition A composition series $\Sigma: G=G_{0} \geq G_{1} \supseteq \ldots \geq G_{n}=\{e\}$ is said to be a Jrdan-Hölder sues if:
(i) $\Sigma$ is strictly decreasing (ie $G_{j+1} \not \subset G_{j} \quad \forall j=0, \ldots, n-1$ )
(ii) There is no strictly decuasing ampsition series distinct prom $\sum$ and finer than $\sum$.

Proposition: A composition series $\Sigma$ of $G$ is Jordan-Hölder (or JH for short) if and only if $g_{i}^{\sum}(G)$ is simple fo all $i=0, \ldots, n-1$.
(Recall: $3 e\}$ is not simple; $G$ is simple if $H \Delta G \Rightarrow H=\{e\}$ or $G$ )
Prof: Note that a composition series is strictly deceasing if and only it none of its associated quotients is $3 e\}$.

Let $\Sigma: G=G_{0} \nexists G_{1} \geqslant \cdots \not G_{n}=$ e\} ~ b e ~ a ~ s t r i c t l y ~ d e c e a s i n g ~ compsition series that is not $J H$. Then, there exists a strictly decreasing series $\sum$ 'finer than $\sum$. Thess, we can find $i=0, \ldots, n-1$ where $G_{i+1} \ngtr G_{i}$ are not consecetiere in $\Sigma^{\prime}$. That is, there exist intermediary nomad subgroups:

$$
G_{i+1} \ngtr H_{k} \unrhd \cdots H_{2} \ngtr H_{1} \notin G_{i}
$$

In particular, $G_{i+1} \triangleleft H_{1}$ since $G_{i+1} \downarrow G_{i} \& G_{i+1}<H_{1}<G_{i}$.
Hence, $H_{1} / G_{i+1}$ is a nontrivial normal subgroup of $G_{i} / G_{i+1}$, so $g_{i}(G)$ is not simple.
Conversely, assume $\left.\Sigma: G=G_{0} \ngtr \cdots \not \supset G_{n}=3 e\right\}$ is a strictly deceasing composition series, one of whose graded pieces, say $G_{i} G_{i+1}$ is not simple. By the second Isomishism Thisem, a paste, noitrinial normal subgroup of $G_{i} / G_{i y}$ is of the from $H / G_{i+1}$ fo some intermediate normal sub roup

$$
\left.G_{i+1}<H \triangleleft G_{i} \quad \text {. Thus, } G_{i+1} \vec{x} H \vec{x} G_{i+1}\right)
$$

Conclude: $\Sigma^{\prime}: G=G_{0} \geqslant G_{1} \ngtr \ldots \geqq G_{i} \supsetneq H \ngtr G_{i+1} \nexists \cdots \geqslant G_{n}=\{e\}$ is freer than $\Sigma$, si $\Sigma$ is not J-H.

1. A general poop $G$ need NOT pass a JH series

Ex. $\quad \mathbb{Z} \supsetneq 2 \mathbb{Z} \geqslant 4 \mathbb{Z} \supsetneq 8 \mathbb{Z} \supsetneq \cdots \not \ni G_{k}=2^{k} \mathbb{Z} \supsetneq \cdots \cdot$ cannot terminate
However, every finite group $G$ has a Jrdan-Hilder (By induction on $|G|$ ) More precisely, pick $H$, maximal ami all paste, normal subpoups of $G$, recursively let $H_{n+1}$ be maximal ammo proper normal subgroups of $H_{n}$. The puredure must halt (in, aT mist, $|G|$ steps), thees framing a JH series).
Theorem (Jrdan-Hölder) Two Jordan - Holder series of a soup $q$ are epenvalent. Shool: Let $\Sigma_{1}, \Sigma_{2}$ be two JH series of $G$. By Schier's Thur, we cam refine them $T_{0} \Sigma_{1}^{\prime} \& \Sigma_{2}^{\prime}$ where $\Sigma_{1}^{\prime} \& \Sigma_{2}^{\prime}$ are eqpeinaluat

As $\Sigma_{1}\left(\right.$ and $\left.\Sigma_{2}\right)$ is $J H, \Sigma_{1}^{\prime}\left(\right.$ and $\left.\Sigma_{2}^{\prime}\right)$ is either identical to $\Sigma_{1}\left(\operatorname{rese}, \Sigma_{2}{ }_{2}^{133}\right.$ or it is obtained fum $\Sigma_{1}$ (resp. $\Sigma_{2}$ ) by repeating some terms. As the series of quotients of $\Sigma^{\prime}, \& \Sigma_{2}^{\prime}$ differ only in the order of the jaded pieces, after resorting all Trial quotients, the same is tue for $\Sigma_{1} \& \Sigma_{2}$
Ex: $\quad G=\mathbb{Z} / 6 \mathbb{Z}$

$$
\begin{aligned}
& \Sigma_{1}: \mathbb{2} / 6 \geqslant \geqslant \pi / 3 \boxtimes 3 \mathrm{e} \geqslant \mathrm{JH} \\
& \left.\Sigma_{2}: \mathbb{2} / 6 \mathbb{Z} \nexists 2 / 2 \mathbb{2} \nexists 3 e\right\} \quad \text { tH }
\end{aligned}
$$

Faded pieces :

$$
\begin{aligned}
& n_{0}^{\Sigma_{1}}(G)=\mathbb{Z} / 2 \mathbb{2}=n_{1}^{\Sigma_{2}}(G) \\
& n_{1}^{\Sigma_{1}}(G)=\mathbb{Z} / 3 \mathbb{Z}=n_{0}^{\Sigma_{2}}(G)
\end{aligned}
$$

Corollary: Let $G$ be a poup that admits a JH series. If $\Sigma$ is any strictly deceasing compsitimseres of $G$, then there exists a JH series refining $E$.

Sketch of a proof: Let $\Sigma_{0}$ be a J-H aries of $G$. By Schrier's Thu, we can find $\Sigma_{0}^{\prime} \& \Sigma^{\prime}$ Two equivalent composition serves repining $\Sigma_{0} \& \Sigma$, resp. The proof of JH Theorem ensures that $\Sigma_{0}^{\prime}$ is $J H$ \& so $\Sigma^{\prime}$ is also JH.
Example 1:

$$
\begin{aligned}
& G=\mathbb{Z} / p^{k} \mathbb{Z} \quad k>1 \\
& k>1 \text { paved pieces fo } J H=\mathbb{Z} / p \mathbb{Z} \\
& =\langle g\rangle \\
& \text { (simple \& order } \mid p^{k} \text { ) }
\end{aligned}
$$

Example 2: $G=\mathbb{Z} / n \mathbb{Z}$ How to build a $J H$ series fo $G$ ?
. If $x$ is prime, $G$ is simple so $G \geq 3 e\}$ is $J H$

- If $n$ is not prime, write $n=p_{1}^{a_{1}} \cdots p_{c}{ }^{a r}$ prime decomposition.

$$
\begin{aligned}
\Rightarrow G & =\frac{\mathbb{Z}}{p_{1} a_{1} \mathbb{Z}} \times \frac{\mathbb{Z}}{\frac{n}{p_{1}^{a_{1}} \mathbb{Z}}}=\mathbb{\mathbb { 4 }} / a_{1}^{a_{1}} \mathbb{U} \times\left(\mathbb{Z} / a_{2}^{a_{2}} \mathbb{Z} \times \frac{\mathbb{Z}}{\frac{n}{p_{1}, p_{2}^{a_{2}}} \mathbb{Z}}\right)=\cdots \\
& =\mathbb{Z} a_{1}^{a_{1}} \mathbb{Z} \times \cdots \times \mathbb{p _ { r } a _ { r } \mathbb { Z }}
\end{aligned}
$$

$$
\Rightarrow G=G_{0} \ngtr G_{1}:=\underset{\frac{n}{1, a_{1}} \mathbb{Z}}{2} \geq G_{2}:=\frac{\mathbb{Z}}{\frac{n}{p_{1} \cdot l_{2}^{a_{2}}} \mathbb{Z}} \geq \cdots \geq G_{r-1}:=\mathbb{Z} / a_{r} \geq G_{r}=\{e\}
$$

amp series with graded pieces $=p$-groups.
We can repine each $G_{i}=\frac{\mathbb{Z}}{\frac{n}{p_{1}^{a_{1}} \ldots p_{i}^{a_{i}}}} \geq G_{i+1}=\mathbb{\mathbb { Z }} \frac{n_{n}}{p_{1}^{a_{1}} \cdots p_{i+1}^{a_{i+1}}} \mathbb{Z}$
by lifting a JH series of $\frac{\mathbb{Z}}{P_{i+1}} \mathbb{Z}$ (use Example 1)

